
Automating Reinforcement Learning Architecture

Design for Code Optimization

Huanting Wang
1. Northwest University, China
2. University of Leeds, U. K.

Zhanyong Tang
Northwest University, China

Cheng Zhang
Northwest University, China

Jiaqi Zhao
Northwest University, China

Chris Cummins
Meta AI Research, USA

Hugh Leather
Meta AI Research, USA

Zheng Wang
University of Leeds, U. K.

Abstract

Reinforcement learning (RL) is emerging as a powerful tech-
nique for solving complex code optimization tasks with an
ample search space. While promising, existing solutions re-
quire a painstaking manual process to tune the right task-
specific RL architecture, for which compiler developers need
to determine the composition of the RL exploration algo-
rithm, its supporting components like state, reward and
transition functions, and the hyperparameters of these mod-
els. This paper introduces SuperSonic, a new open-source
framework to allow compiler developers to integrate RL
into compilers easily, regardless of their RL expertise. Super-
Sonic supports customizable RL architecture compositions
to target a wide range of optimization tasks. A key feature
of SuperSonic is the use of deep RL and multi-task learn-
ing techniques to develop a meta-optimizer to automatically
find and tune the right RL architecture from training bench-
marks. The tuned RL can then be deployed to optimize new
programs. We demonstrate the efficacy and generality of
SuperSonic by applying it to four code optimization prob-
lems and comparing it against eight auto-tuning frameworks.
Experimental results show that SuperSonic consistently im-
proves hand-tuned methods by delivering better overall per-
formance, accelerating the deployment-stage search by 1.75x
on average (up to 100x).
CCS Concepts: • Software and its engineering → Com-

pilers; • Computing methodologies → Artificial intelli-
gence.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
CC ’22, April 02–03, 2022, Seoul, South Korea
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9183-2/22/04. . . $15.00
https://doi.org/10.1145/3497776.3517769

Keywords: Compiler optimization, reinforcement learning,
code optimization
ACM Reference Format:

Huanting Wang, Zhanyong Tang, Cheng Zhang, Jiaqi Zhao, Chris
Cummins, Hugh Leather, and Zheng Wang. 2022. Automating Re-
inforcement Learning Architecture Design for Code Optimization.
In Proceedings of the 31st ACM SIGPLAN International Conference
on Compiler Construction (CC ’22), April 02–03, 2022, Seoul, South
Korea. ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/
3497776.3517769

1 Introduction

There is a growing interest in using auto-tuning techniques
for code optimization [9, 18, 27, 32, 62, 70, 88]. Auto-tuning
finds good optimizations from empirical observations, often
outperforming hand-crafted heuristics [9, 52]. This technique
is particularly attractive for frequently used libraries and
kernels. For such scenarios, developers are willing to spend
hours or weeks of CPU time to automatically search for even
a few percentages of performance improvement [18, 23, 50,
83], knowing the optimized code will be used by many users.

In recent years, deep reinforcement learning (RL) has been
shown to be effective for navigating a sizeable discrete space,
outperforming traditional search techniques on a range of
optimization tasks [33, 60, 79, 85, 87]. Deep RL is also a nat-
ural fit for many code optimization problems where the task
can be seen as applying a sequence of actions to maximize
the gain [88]. Examples of such problems include compiler
flag selection and ordering [4, 25, 47], instruction scheduling
[69, 80, 92] and hardware resource allocation [26]. Indeed,
we see a growing interest in the research community and
industry [23, 83] in using RL and deep RL to tackle a wide
range of code optimization problems [13, 35, 36, 45, 53, 68].
Developing a deep RL solution for code optimization re-

quires choosing and parameterizing several components: (i) a
discrete set of actions or transformations that can be applied
to a program, such as passes in a compiler; (ii) a state func-
tion that can summarize the program after each action as a
finite feature vector, and (iii) a reward function that reports
the quality of the actions taken so far. Some RL algorithms

https://doi.org/10.1145/3497776.3517769
https://doi.org/10.1145/3497776.3517769
https://doi.org/10.1145/3497776.3517769

CC ’22, April 02–03, 2022, Seoul, South Korea H. Wang, Z. Tang, C. Zhang, J. Zhao, C. Cummins, H. Leather, and Z. Wang

may also allow the selection and further parameterization of
a transition function, which governs the choice of actions to
be applied in each state. Moreover, parameters of individual
RL components need to be tuned on benchmarks.

Efforts have been made to provide RL algorithms and high-
level APIs for action definitions [23, 51], models for program
state representation [12, 21, 86, 90], and tools for training
benchmark generation [22–24]. While these recent works
have lowered the barrier for integrating RL techniques into
compilers, compiler engineers still face a major hurdle. As
the right combination of RL exploration algorithms and their
state, reward and transition functions and parameters highly
depend on the optimization task, developers must carefully
choose the RL architecture by finding the right RL compo-
nent composition and their parameters from a large pool of
candidate RL algorithms, machine-learning models and func-
tions. This process currently requires testing and manually
analyzing a large combination of RL components. Experience
in the field of neural architecture search shows that doing
this by hand is an expensive and non-trivial process [28].

This paper presents SuperSonic1, an open-source frame-
work to automate the RL architecture search and param-
eter tuning process to make it easier to integrate RL into
compilers. To use SuperSonic, the compiler developer pro-
vides the action list according to the problem being tackled
and a measurement interface to report metrics like code
size or speedup. SuperSonic then automatically assembles
an RL architecture for the targeting optimization from an
extensible set of built-in RL components. The SuperSonic
RL components include pre-trained state functions, such as
Word2Vec [57] and CodeBert [29]. It provides candidate re-
ward functions like RelativeMeasure and tanh to compute
the reward based on the metric given by the measurement in-
terface. The state-transition function can be selected from a
further set of predefined transition functions, such as a tran-
sition probability matrix or LSTM [39]. Finally, SuperSonic
takes a customizable set of predefined RL algorithms, like
Proximal Policy Optimization (PPO) [77] and Monte Carlo
tree search (MCTS) [14], which may be driven by any of the
chosen reward, state, actions and transition function. This
creates a large space of possible parameterized RL architec-
tures, which can be defined by the compiler developer with
a few lines of Python using an easy-to-use API.

Armed with this space of RL architecture choices, Super-
Sonic will automatically and efficiently search it to find the
one that gives the best results over a sample of user-provided
training benchmarks. The search is accomplished by a deep
RL-basedmeta-optimizer that is designed to be generalizable
to any optimization tasks. Once the meta-optimizer has se-
lected the client RL architecture and its parameters, the work
of SuperSonic is over. As an output, SuperSonic stores the
tuned client RL as serialized objects. It provides an API for a

1Available at: https://github.com/HuantWang/SUPERSONIC

compiler or performance tuner to use the stored RL to drive
the code transformation pass for new, unseen programs. On
an unseen program, the client RL may be used to search for
the actions that yield the best reward. Alternatively, it can be
further generalized by training on additional benchmarks so
that actions for new programs can be chosen directly from
the policy without further search at the deployment time.
SuperSonic aims to automatically make the client RL as
good as possible for the compiler developer’s needs.

As this client RL search and tuning process is automated
and requires little RL expertise, SuperSonic further reduces
the difficulties for integrating RL into compilers by replacing
compiler developer time with machine hours. This client RL
search and tuning process is a one-off cost performed offline.
The compiler end-users (e.g., application developers) will
not experience this process – they will use the shipped RL
like any other feedback directed compiler passes [16].

We evaluate SuperSonic by applying it to four optimiza-
tion tasks: Halide schedule optimization [69], neural network
code generation [18], compiler phase ordering [25] for code
size reduction and superoptimization [43]. Each of the tasks
has a large number of combined optimization options, so
it is non-trivial to design a good search strategy. We com-
pare SuperSonic against eight tuning methods developed by
independent researchers, including search-based strategies
specifically designed for the targeting problem [3, 19, 62, 76],
generic tuning frameworks like OpenTuner [9] and Compil-
erGym [23], and hand-tuned RL solutions for the relevant
task [5, 68]. Our extensive evaluation shows that SuperSonic
consistently gives better overall performance than alterna-
tive methods across tasks during deployment. We show that
the client RL given by SuperSonic converges fast, and it can
start producing better code over competing search methods
by using on average 1.75x less search time (up to 100x) for
new programs during deployment.

This paper makes the following contributions:

• We present a generic framework to automatically
choose and tune a suitable RL architecture for code
optimization tasks (Section 3).

• We demonstrate how deep RL can be used as a meta-
optimizer to support the integration of RL into perfor-
mance tuners (Section 3.3).

• We provide a large study validating the effectiveness
of RL in four code optimization tasks (Section 5).

2 Background

2.1 Deep Reinforcement Learning

RL is a machine learning technique where agents learn to
perform actions in an environment to maximize a cumulative
reward [81]. The environment represents the problem to be
solved, and the agent represents the learning algorithm. At
each time step, the agent observes the environment state
and takes an action (e.g., deciding which compiler option

https://github.com/HuantWang/SUPERSONIC

Automating Reinforcement Learning Architecture Design for Code Optimization CC ’22, April 02–03, 2022, Seoul, South Korea

to be added or removed from the compilation sequence).
The agent adjusts its actions based on observations gathered
from the environment. It learns a policy to map the states to
the corresponding actions, aiming to maximize the expected
reward. Some RL algorithms also learn a value function to
evaluate the current situation of the environment and the
decision-making process of the agent. Unlike a policy func-
tion that answers the question of “how to act?", the value
function answers the question of “how good the current state
is?". Using a deep neural network (DNN) along with RL is
known as Deep Reinforcement Learning [37].

2.2 Problem Definitions

SuperSonic automates RL component searching and param-
eter tuning. Within SuperSonic, a client RL consists of an ex-
ploration algorithm to choose actions (e.g., compiler options),
a reward function for computing the expected cumulative
reward based on past observations of the environment (e.g.,
execution time after applying a transformation), a method
for modeling the environment/program state (e.g., a DNN
or a linear function), and an action list provided by the user
(e.g., legitimate code transformation options). Depending on
the exploration algorithm, this can also include an state tran-
sition function to compute the probability of going from one
state to another. Each of the components can be chosen from
a pool of SuperSonic built-in candidate methods, and the
combination of these components can result in a large policy
search space. SuperSonic is designed to automatically find
and tune the right combination of RL components and their
hyperparameters. It complements existing RL platforms like
CompilerGym [23] and RLLib [51], by helping the compiler
developers to choose and optimise a suitable RL algorithm.

2.3 Multi-armed Bandit Problem

The effectiveness of an RL algorithm is highly dependent on
the problem to be solved, but manually choosing the right RL
components is non-trivial [44]. In this work, we formulate RL
component search as a multi-armed bandit (MAB) problem
[30]. Given a budget of𝑛 trials and𝑘 candidate RL component
configurations (or slot machines), we use a deep RL-based
MAB solver to allocate the trials among candidate policy
architectures to test their effectiveness. After 𝑛 trials, we
determine which of the 𝑘 RL configurations to use for the
given problem. This technique is detailed in Section 3.3.

3 Our Approach

3.1 Overview

Figure 1 gives an overview of SuperSonic. At the core of
SuperSonic is a meta-optimizer that builds upon MAB and
deep RL techniques. Given a client RL search space defined by
the SuperSonic Python API, the meta-optimizer searches for
a suitable RL component configuration for an optimization
task. It then automatically tunes a set of tunable hyperpa-
rameters of the chosen components. The tuned client RL can

then be used to optimize unseen programs through inference
(including potential retraining), which is outside the scope
of SuperSonic. The search space definition and RL client
architecture search and parameter tuning are a one-off offline
process, which is within the scope of SuperSonic.
Implementation. We implement SuperSonic in Python
and use gRPC for distributed communications. SuperSonic
builds upon CompilerGym [23] and RLlib (Ray) [51] by uti-
lizing their APIs for task definitions and RL algorithm imple-
mentations. SuperSonic currently supports 23 RL algorithms
from RLLib [51] and 10 pre-trained DNNs and functions for
representing the program state or computing the reward.
Compiler developers may choose a subset, add their own, or
include all (the default) supported RL algorithms and models
for the meta-optimizer to search over.
Task definition. The compiler developer first defines the
optimization problem by creating an RL policy interface (Fig-
ure 2). The definition includes a list of client RL components
for the meta-optimizer to search over.
Client RL search. Calling to policy_search() invokes
SuperSonic meta-optimizer, where the developer can also
limit the number of trials spent on client RL searching.
Client RL parameter tuning and deployment. After
choosing an RL architecture, the meta-optimizer will fine-
tune a set of model-specific hyper-parameters of the selected
client RL (see also Table 1). Hyperparameter tuning is per-
formed on the training benchmarks. The tuned client RL
and its parameters are saved, which can be shipped with a
compiler to optimize unseen programs at deployment time.
Measurement engine. The measurement engine evaluates
a code transformation option using an user-supplied inter-
face (line 24 in Figure 2). Measurements are used during
client RL search and tuning, as well as deployment phases
to obtain feedback for a chosen optimization action.

3.2 Task Definition

The user-defined client RL search space typically includes
candidate functions (or models) for representing the envi-
ronment state, objective functions for computing the reward,
and the set of possible actions that can be taken from a given
state. This search space definition can optionally include a
chosen set of RL exploration algorithms and transition func-
tions to be used by a client RL algorithm. By default, Super-
Sonic automatically search over all supported RL algorithms
where each algorithm has a default transition function. Fur-
thermore, the compiler engineer also needs to provide a
run function, which provides the measurement of an action
to compute the reward. These are implemented in a small
Python program to interface with the SuperSonic API. The
definition code is similar to the programming environment
of mainstream auto-tuners like OpenTuner and Compiler-
Gym, allowing the developer to quickly port their code to
use the SuperSonic search and tuning components.

CC ’22, April 02–03, 2022, Seoul, South Korea H. Wang, Z. Tang, C. Zhang, J. Zhao, C. Cummins, H. Leather, and Z. Wang

Measurement Interface

State
functions

Reward
functions Actions

Multi‐armed Bandit based
Policy Search

Multi‐task learning

Client RL Search

Client RL search space

RL algorithms

SUPERSONIC

Training
benchmarks

Chosen Client RL
Architecture

Optimized code

Tuned Client RL

Unseen programs

Client RL Deployment

Client RL Parameter Tuning

Offline Task defining and Client RL Search; Done once Retraining and inference

Figure 1. Overview of SuperSonic components. This framework enables developers to express the optimization space. It
automatically searches for the optimal client RL architecture to be used for inference during deployment.

1 import SuperSonic as ss

2 from SuperSonic.stateFunctions.models import *

3 ...

4 statefs = [Word2Vec (...),Doc2Vec (...),CodeBert

(...),ActionHistory (...)]

5 tranfs = [DNN (...),CNN (...),LSTM (...)]

6 rewards = [RelativeMeasure (...),tanh (...)]

7 rl_algs = [MCTS (...),PPO (...),DQN (...),QLearning

(...)]

8 actions = [Init (...)]

9 ...

10
11 class SuperOptimizer(ss.PolicyInt):

12 def __init__(self , statefs , tranfs , actions ,

rewards , rl_algs):

13 self.PolicySpace = {

14 "StatList": statefs ,

15 "TranList": tranfs ,

16 "ActList": actions ,

17 "RewList": rewards ,

18 "AlgList": rl_algs ,

19 }

20 self.search_engine = SearchEngine(self.

PolicySpace)

21
22 def run(self):

23 #user code for compilation and execution

24 ...

25 return Result(time=run_result['time'])

26
27 if __name__ =='__main__ ':

28 opt = SuperOptimizer(statefs , tranfs , actions ,

rewards , rl_algs)

29 policy = opt.policy_search(

training_benchmark_list , num_of_trials =100)

Figure 2. Simplified tasks definition for superoptimizaton.

Figure 2 gives a simplified example that defines the client
RL search space for superoptimizaton [43, 55]. This example
specifies candidate methods for representing the environ-
ment state, functions for computing rewards, the definition
for action space, and a chosen set of client RL algorithms.
The run function implements the measurement interface, in-
cluding user code for compiling and executing the program
for a given code transformation action. Finally, the program
invokes the policy search API by passing in a list of training
benchmarks and the number of search trials. We stress that
measurement interface defines how to compile and execute a
test program, but the target program can be of any language.

3.3 Client RL Search

Given a client RL search space, the SuperSonic meta-
optimizer automatically finds a suitable client RL architec-
ture (i.e., <state function, transition function, reward func-
tion, RL algorithm> and potentially a value function) from
training benchmarks.We formulate the client RL search prob-
lem as a MAB problem that is solved using a parallel DRL
algorithm. Deep RL can reuse knowledge from other tasks
to speed up the search. In contrast, evolutionary algorithms
have to search from afresh. Our work is the first to formulate
client RL tuning for code optimization as a MAB problem
and employs deep RL as a meta-solver.

Our meta-optimizer is a variant of the Asynchronous Ad-
vantage Actor Critic (A3C) algorithm [38, 59]. A3C is a dis-
tributed algorithm, where multiple workers independently
update a global value function – hence “asynchronous". We
choose this algorithm because it is shown to be effectively
in other RL application domains [38] and permits us to de-
velop a parallel policy search engine. Specifically, the meta-
optimizer consists of two RL models, an actor for computing
an action based on observation and a critic for estimating a
reward value. In a nutshell, the actor is a policy RL that takes
as input the environment state and outputs the best action
(a policy architecture in our context). The actor essentially
controls how the meta-optimizer choose a candidate client
policy to try out. By contrast, the critic is value-based RL
that evaluates the action by adjusting its value function to
estimate the maximum future reward based on the historical
observations obtained from training benchmarks. As time
passes, the actor is learning to produce better actions, and
the critic is getting better at evaluating those actions.
Like [38], we implement the actor and the critic using a

stacked neural network consisting of a ResNet convolution
neural network (CNN) [46] that is followed by a LSTM re-
current neural network (RNN) [39]. We use the output of
the LSTM to update the policy function of the actor and the
value function of the critic. Input to the actor model is a
1-dimensional history vector containing the last 20 actions
(policies) that the meta-optimizer has tested. Input to the
critic model is a history vector plus a cumulative reward
averaged across benchmarks, computed using an Area under
the Curve (AUC) function.

Automating Reinforcement Learning Architecture Design for Code Optimization CC ’22, April 02–03, 2022, Seoul, South Korea

Client RL searching strategy. At each of the 𝑛 trials, the
meta-optimizer obtains an action (i.e., a client policy architec-
ture to test) from the actor model. The meta-optimizer uses
the user-provided measurement function to obtain the ob-
servation, which is then used to compute the current reward.
The current reward and the environment state is passed to
the critic model to update its value function. The value func-
tion of the critic also estimates the future reward which is
given to the actor to update its policy network. By default,
the meta-optimizer runs each client RL for 50 exploration
steps during a trial to allow it to converge before taking the
observation. We use the 20 most recently chosen policy ar-
chitectures as the state. We then measure the area under the
reward curve of the recently chosen 20 policies to compute
the current reward. After the meta-optimizer performs 𝑛
trails on training benchmarks, we check the latest 20 actions
chosen by the actor. We then use the most frequently cho-
sen policy architecture as the outcome of policy search. Our
intuition is that the actor would be more efficient in picking
good policy architectures towards the end of the search and
would choose the optimal policy as the action more often.
This search process also implicitly model the learning time
of a candidate client RL. A client RL is chosen because it can
learn quickly to give good results on training benchmarks
within the given time.
Failure during client RL search. In this work, we did not
observe failure in combining RL components in our case
studies. When using a client RL, failures can happen - the
underlying compiler (driven by RL) may fail due to e.g., in-
valid combinations of compiler flags or compiler bugs. These
are automatically handled by RL which will avoid trying
these options in future iterations. Furthermore, while Super-
Sonic could miss an RL architecture that can be improved
through fine-tuning, we have performed a large-scale search
on our case studies and did not observe this. This issue can
also be mitigated by performing RL-architecture search and
parameter fine-tuning in a single process.
Multi-task learning. If multiple optimization tasks are de-
fined, we then use multi-task learning (MTL) to find an in-
dividual policy for each task given a total budget of 𝑛 trials.
SuperSonic provides a distributed, parallel meta-optimizer,
building on top of an open-source MTL framework [38]. For
each optimization task, it creates an environment and assigns
a meta-optimizer instance to the environment, so that client
RL search for different optimization tasks can be performed
in different, potentially distributed environments. In our eval-
uation, we implement an execution environment in a Docker
container. SuperSonic realizes different environments and
their associated actors as parallel workers that can run on a
single machine or multiple distributed machines. An issue of
using a standardMTL algorithm is that the learner is likely to
give more resources (e.g., #trials, time or machines) to tasks
with higher rewards, leading to unfair resource allocation

Table 1. Example tunable parameters

Algorithms Parameters

Common param. Batch size for workers; Train batch size; Mini-
batch size; learning rate

MCTS Dirichlet noise and epsilon; Puct coefficient; Sim-
ulation times; Loss temperature

PPO Entropy coefficient; Adam optimizer step size;
GAE estimator parameter; Policy ratio clipping

DQN #atoms; Discrete supports; Adam epsilon; Clip
gradients

Q-Learning Behavior Cloning Pretraining numbers; Q-
Learning loss temperature; Lagrangian threshold;
Min Q weight multiplier

among tasks. To address this issue, we use a regularization
mechanism, similar to [84], by adding a normalization layer
to the actor and the critic network.

3.4 Client RL Parameter Tuning

During the client RL search stage, SuperSonic uses the de-
fault hyperparameter and pre-trained models. After a client
RL architecture is chosen, the SuperSonic meta-optimizer
uses training benchmarks to fine-tune a set of common and
algorithm-specific hyperparameters. Each SuperSonic built-
in DNN model also has a standard training API. Therefore,
the meta-optimizer also uses the measurements and obser-
vations generated during parameter tuning to fine-tune the
relevant DNN models, e.g. for state representation. Table
1 gives some of the example hyperparameters supported
by SuperSonic. We note that the user does not need to ex-
plicitly supply these parameters because they are known
to SuperSonic. Our parameter tuning method is a parallel
population-based training (PBT) algorithm [41] from RLlib.
Like client RL search, the user can also specify how much
trials can be spent on parameter tuning. Once the budget is
used up, the best-found parameter setting is returned. Our
evaluation applies cross-validation to ensure the tuned RL is
always tested on new, previously unseen benchmarks.

3.5 Client RL Deployment

Finally, the tuned client RL is saved as serialized objects.
The chosen hyperparameters and action space are stored
in JSON files. SuperSonic provides APIs to load and reuse
the stored objects to optimize any new program. To apply a
tuned RL, SuperSonic creates a session to apply a standard
RL loop to optimize the input program by using the chosen
RL exploration algorithms to select an action for a given
state. For example, the state could be a vector recording the
last 𝑛 compiler options added into the compiler flags or a
DNN (see also Section 5.5.3).

3.6 Measurement Engine

For a given optimization option, the measurement engine in-
vokes the user-supplied run function to compile and execute
the program in the target environment. The user function

CC ’22, April 02–03, 2022, Seoul, South Korea H. Wang, Z. Tang, C. Zhang, J. Zhao, C. Cummins, H. Leather, and Z. Wang

Table 2. Case studies in our evaluation

Use cases #Bench. Competing Methods Search space

C1: Optimizating image
pipeline

10 Halide master [62],
auto-schedulers [3],
HalideRL [68], Open-
Tuner

73 ∗ 27 ∼ 73 ∗ 37

C2: Neural network
code optimization

5 AutoTVM [19],
Chameleon[5], Open-
Tuner

5 ∗ 103 ∼ 20 ∗ 103

C3: Code size reduction 43 CompilerGym [23],
OpenTuner

12360 ∼ 123150

C4: Superoptimization 40 STOKE [76], Open-
Tuner [9]

9100,000 ∼ 916,000,000

Table 3. Candidate state functions and reward functions

Case Studies: 1 2 3 4

Word2Vec [58]
Doc2vec [49] ✓ ✓
CodeBert [29]
Manual features (e.g. LLVM IR
representation from [40])

✓

Action History
State func.

Hash of Action History ✓
Relative measure (e.g. speedup,
code size reduction ratio)

✓ ✓

Reward func. function output (e.g. tanh()) ✓ ✓

reports the result for each execution, which is stored in a
result database implemented using SQLLite. The database
also holds information obtained during the search, including
the action history, reward, and execution outputs for each
benchmark. The client RL gathers the result of an action by
querying the result database. Decoupling the RL exploration
and measurement allows the parallel execution of measure-
ment and the RL agent, possibly across different machines.
Parallel execution can reduce the measurement cost, which
often dominates the auto-tuning process.

4 Experimental Setup

We evaluate our approach by applying it to four code opti-
mization tasks and compare it against eight tuning methods,
including hand-tuned RL solutions. Table 2 summarizes our
evaluation setup, including the search space size and compet-
ing methods for each case study. We note that the overhead
of RL is dominated by gathering feedback from the environ-
ment through, e.g., compiling and executing the program.
While case studies 3 and 4 have a larger search space than
case studies 1 and 2, obtaining feedback incurs lower over-
head in case studies 3 and 4 compared to 1 and 2, leading to
an overall faster search time for case studies 3 and 4.

4.1 Case Study 1: Optimizing Image Pipelines

The problem. This task aims to improve the optimization
heuristic of the Halide compiler framework for image pro-
cessing [69].A Halide program separates the expression of
the computation kernels and the application processing pipeline
from the pipeline’s schedule. Here, the schedule defines the

order of execution and placement of data on the hardware.
The goal of this task is to automatically synthesize schedules
to minimize the execution time of the benchmark.
Methodology. This task builds upon Halide version 10. Our
evaluation uses ten Halide applications that have been heav-
ily tested on the Halide compiler. We measure the execu-
tion time of each benchmark when processing three image
datasets provided by the Halide benchmark suite. The bench-
marks are optimized to run on a multi-core CPU.
Competing methods. We compare SuperSonic against
four prior methods designed for optimizing Halide sched-
ules. These include two Halide built-in auto-scheduling algo-
rithms (Halide master [62] and auto-scheduler [3]), a hand-
tuned RL method (HalideRL) [68], and OpenTuner. We show
speedups over Halide master.
Actions. Each Halide program comes with a scheduling
template that defines an 𝑛 stages schedule. We can apply
optimizations like loop tiling and vectorization to each stage.
We apply four actions to construct a 𝑛-stage scheduling se-
quence. These include adding or removing an optimization
to the stage and decreasing or increasing the value (by one)
of an enabled parameterized option.

4.2 Case Study 2: Neural Network Code Generation

The problem. This task targets DNN back-end code genera-
tion to find a good schedule. e.g., instruction orders and data
placement, to reduce execution time on a multi-core CPU.
Methodology. This study is conducted within the TVM com-
piler v 0.8 [18]. We use 5 CNN kernels where their schedule
optimization space is defined by the TVM developer.
Competing methods.We compare our approach against
four TVMbuilt-in tuning strategies, including random search,
genetic algorithms, grid-based search and XGBoost-based
search. In addition to these, we also compare our approach
to OpenTuner and Chameleon [5] - a recently proposed,
hand-tuned RL method designed for TVM. We show the im-
provement over the TVM compiler (TVMC)without schedule
optimization.
Actions. Each TVM benchmark comes with a schedule tem-
plate that defines a set of tuning knobs like loop tiling pa-
rameters. We consider four actions in this task: adding or
removing a knob to the schedule sequence, and decreasing or
increasing the parameter value (by one) of a parameterized
knob in the optimization sequence. The number of tuning
configurations vary across benchmarks (Table 2).

4.3 Case Study 3: Code Size Reduction

The problem. This task is concerned with determining the
LLVM passes and their order to minimize the code size.
Methodology. Following the setup of CompilerGym, we
compute the code size reduction by measuring the ratio

Automating Reinforcement Learning Architecture Design for Code Optimization CC ’22, April 02–03, 2022, Seoul, South Korea

of LLVM IR instruction count reduction over the LLVM -
Oz code size optimization option. This metric is platform-
independent and deterministic. Note that the IR instruction
count strongly correlates to the binary size - fewer instruc-
tions typically lead to a smaller binary. In this evaluation,
we use 43 benchmarks: 23 from the CBench suite [1] and 20
single-source benchmarks from the LLVM test suite [2].
Competing methods.We compare our approach against
OpenTuner and the Greedy and Random search strategies
for code size reduction implemented by CompilerGym. The
CompilerGym Greedy algorithm has a threshold, 𝑒 , for con-
trolling how often the algorithm switches between random
and greedy searches, with 𝑒 = 0 for a solely greedy strat-
egy and 𝑒 = 1 for a purely random algorithm. We set 𝑒 to
0.1, which produces comparable results as CompilerGym
developers reported on their platforms.
Actions.We consider all the 123 semantics-preserving passes
of LLVM. The RL agent determines which pass to be added
into or removed from the current compiler pass sequence.
Note that the length of the compiler pass sequence is un-
bounded. An LLVM pass can appear multiple times in the
pass sequence and be inserted before or after any pass.

4.4 Case Study 4: Superoptimization

The problem.This classical compiler optimization task finds
a valid code sequence to maximize the performance of a loop-
free sequence of instructions [43, 55]. Superoptimization is
an expensive optimization technique as the number of pos-
sible configurations grows exponentially as the instruction
count to be optimized increases.
Methodology. In this task, we apply SuperSonic to find a
client RL for STOKE, the state-of-the-art superoptimizer [76].
Given a set of test cases consisting of input-output pairs and a
subset of x86-64 instructions, STOKE synthesizes a program
(at the assembly code level) that uses these instructions and
agrees with the test cases. We use all the 25 benchmarks from
the STOKE Hacker dataset. Additionally, we also extract 15
loop-free and frequently-executed functions from SPEC CPU
2017 and the LLVM test suite, 10 from SPEC and 5 from the
LLVM test suite. The seed input to the performance tuner
is the assembly code generated by compiling the C code
with the -O0 compiler option. We use STOKE’s mutation
engine to modify the target instructions and its equivalent
testing method to verify if the transformed code satisfies the
test cases. We also manually verify the correctness of the
best-performing version found by each method.
Competingmethods.We compare SuperSonic to theMarkov
chain Monte Carlo (MCMC) based STOKE search technique
and OpenTuner. We test all schemes on LLVM and GCC and
use -O3 as the baseline. As noted in the STOKE document, the
STOKE implementation is not mature enough to improve -O3

code. However, as we will show later, SuperSonic can de-
liver noticeable improvement over -O3 on certain test cases,
demonstrating the potential of auto-tuning techniques.
Actions.We consider all the instruction-level transforma-
tions supported by STOKE. These include replacing the op-
code and operand of an instruction as well as inserting, re-
placing and swapping instructions.

4.5 Client RL Architecture Search Space

We consider all the SuperSonic-supported RL algorithms
when searching the client RL. SuperSonic chooses to use
PPO for code size reduction and MCTS for the other three
tasks. Table 3 lists the state and reward functions considered
in each task, where we highlight the SuperSonic chosen
function using a check mark. As can be seen from the ta-
ble, no RL algorithm dominates our case studies - the best
algorithm depends on the optimization task. However, the
Supersonic-chosen RL algorithm generalizes well to input
test programs of an optimization task.

4.6 Hardware and Software Platforms

For case studies 1, 2 and 4, we use two multi-core servers to
evaluate the resulting code. The first server has 2x 26-core
Intel Xeon 8179M CPU running at 2.40GHz, and the second
server has 2x 32-core AMD EPYC 7532 CPU at 2.4GHz. Both
servers have 128GB of RAM and run Ubuntu 20.04 with Linux
kernel v5.4. In our evaluation, we run the SuperSonic meta-
optimizer on the AMD server and use the chosen client RL
to optimize the target task on both machines. We run the rel-
evant deep learning models on an NVIDIA RTX 2080 Ti GPU.
We use LLVM v10 as the backend compiler to generate the
executable binary in our evaluation. For superoptimizaton,
we also test our approach on GCC v11.2.

4.7 Performance Report

Cross-validation.Weuse 3-fold cross-validation to evaluate
our approach. This means we partition the benchmarks into
three groups (folds). We perform client RL search and tuning
on two folds of the benchmarks and then test the tuned RL
architecture on the remaining benchmarks. We repeat this
procedure three times to test each of the three folds in turn.
Unless stated otherwise, we exclude the time spent on client
RL search and tuning from the overhead of deployment-
time performance optimization, because client RL search and
tuning is a one-off cost performed offline and the tuned RL
architecture can be applied to many new programs without
incurring this tuning-search overhead. However, we give the
same amount of search time/iterations for all methods when
optimizing a test program.
Runtime measurement. To measure the runtime of the
resulting binary, we run each benchmark at least 100 times
on an unloaded machine. For each benchmark, we also com-
pute the 95% confidence interval bound and increase the

CC ’22, April 02–03, 2022, Seoul, South Korea H. Wang, Z. Tang, C. Zhang, J. Zhao, C. Cummins, H. Leather, and Z. Wang

Sp
ee

du
p

ov
er

Ha
lid

e
m

as
te

r
Opentuner HalideRL Auto-scheduler SuperSonic

6
12

1 5 10 1 5 10
Tuning time (hours)

0.8

1.3

1.8

2.3

AM
D

In
te
l

(a)

Sp
ee

du
p

ov
er

Ha
lid

e
m

as
te

r

Opentuner HalideRL Auto-scheduler SuperSonic

6
12

3.6k 18k 36k 3.6k 18k 36k
Tuning iterations

0.8

1.3

1.8

2.3

AM
D

In
te
l

(b)

Figure 3. Performance to expert-tuned Halide schedules
under different search time (a) and iteration (b) constraints.
SuperSonic gives the overall best performance than other
auto-tuning methods.

number of profiling runs if the interval is greater than 2%.
We report the geometric mean across runs. We also show the
performance variances across benchmarks, compilers and
cross-validation settings as min-max bars on the diagram.
Client RL search. In our evaluation, we apply MTL to per-
form RL search for all four optimization tasks simultaneously
on a single server, with a total search budget of 100 trials.

5 Experimental Results

In this section, we first present the case study results, find-
ing that SuperSonic outperforms hand-crafted strategies
in each task. We then provide an analysis of SuperSonic’s
working mechanisms, showing SuperSonic can accelerate
the deployment-time search by 1.75x. Note that the tuning
time is proportional to the number of tuning iterations, but
the tuning time per iteration can vary between evaluated
methods. Specifically, the SuperSonic-chosen client RL can
perform, on average, 1, 3, 24 and 10 search iterations per
second for case studies 1, 2, 3 and 4, respectively, on our
evaluation platforms.

5.1 Case Study 1: Optimizing Image Pipelines

Figure 3 reports speedup over the Halide master scheduler
[62]. SuperSonic gives noticeable performance improve-
ment on the AMD platform. It also manifests larger advan-
tageswhen the search time is limited. On certain benchmarks,
SuperSonic is able to gives over 11x speedup with a cor-
rectly optimized code. The tree-based auto-scheduler gives a
high speedup of over 10x for a single benchmark, but it has

Sp
ee

du
p

ov
er

 T
VM

C

Random
Genetic algorithm

Grid search
XGBoost

Opentuner
Chameleon

SuperSonic

20 40 60 20 40 60
Tuning time (minutes)

1.1
1.2
1.3
1.4
1.5
1.6

AMD Intel

(a)

Sp
ee

du
p

ov
er

 T
VM

C

Random
Genetic algorithm

Grid search
XGBoost

Opentuner
Chameleon

SuperSonic

1.5
1.75

3k 12k 16k 3k 12k 16k
Tuning iterations

1.1
1.2
1.3
1.4

AMD Intel

(b)

Figure 4. Speedup for DNN code generation under different
search time (a) and iteration (b) constraints. The min-max
bar shows the range across benchmarks. SuperSonic out-
performs all competing methods on both platforms.

a lower mean performance improvement across benchmarks
compared to SuperSonic. On average, SuperSonic delivers
a 1.5x improvement over HalideRL, a manually tuned RL
strategy. Note that HalideRL uses PPO as the exploration
algorithm and the sequence of already applied schedules as
the state function. By contrast, SuperSonic determines that
for this task, using MCTS as the exploration algorithm and a
hash function of the applied schedules as the state function
is better than HalideRL. MCTS compares complete sched-
ules through simulations and looks ahead before making
intermediate scheduling optimizations, leading to a better re-
sult. Overall, SuperSonic outperforms all alternative search
techniques on all but two benchmarks on both platforms.

5.2 Case Study 2: Neural Network Code Generation

Figure 4 reports the the performance improvement over the
default schedules. RL based methods (Chameleon and Super-
Sonic) can generate better code than TVM’s evolutionary
or predictive modeling based search techniques. While ran-
dom and grid-based search can significantly improve one
benchmark (the top point of their min-max), their perfor-
mance is not robust and can give poor performance for other
benchmarks. By contrast, SuperSonic delivers more robust
performance by giving no slowdown on the AMD platform
and only minor slowdown over XGBoost on two benchmarks
on the Intel platform. SuperSonic improves Chameleon, the
second best-performing method, by up to 1.22x, improving
the default schedules by up to 1.74x.

Automating Reinforcement Learning Architecture Design for Code Optimization CC ’22, April 02–03, 2022, Seoul, South Korea

Opentuner
C.Gym.Greedy

C.Gym.Random
SuperSonic

1.1
1.6

50 100 200 3600
Tuning Time (seconds)

0.9
0.95
1

1.05

 R

ed
uc

tio
n

ov
er

 L
LV

M
 -O

z

(a)

Opentuner
C.Gym.Greedy

C.Gym.Random
SuperSonic

1.1
1.6

12K 24K 48K 86K
Tuning iterations

0.9
0.95
1

1.05

 R

ed
uc

tio
n

ov
er

 L
LV

M
 -O

z

(b)

Figure 5.Code size reduction over LLVM -Oz under different
search time (a) and iteration (b) constraints. SuperSonic
outperforms alternative methods.

Table 4. Important compiler passes for code size reduction
and how often a pass is chosen by a search method.

Opentuner C.Gym.Greedy C.Gym.Random SuperSonic

simplifycfg 0.84% 3.29% 1.23% 10.78%

early-cse-
memssa

0.78% 0.18% 0.92% 6.80%

gvn 0.69% 1.83% 0.97% 5.98%

instcombine 0.75% 0.12% 1.17% 8.99%
newgvn 0.74% 2.90% 1.02% 7.66%
others 96.21% 91.67% 94.69% 59.79%

5.3 Case Study 3: Code Size Reduction

Figure 5 reports the code size reduction conducted on the
Intel platform using LLVM. We note that an average code
size reduction of 4% is considered to be significant [72–
74].SuperSonic improves -Oz for all but two test bench-
marks. It delivers the best reduction for 90% of the test bench-
marks. For those benchmarks where SuperSonic does not
deliver the best reduction, the difference between Super-
Sonic and the best-performing method is small, less than
1%. On average, SuperSonic gives the highest mean code
size reduction, improving LLVM -Oz by up to 1.57x.
Table 4 lists the top-5 most frequently-appeared LLVM

passes in the compiler pass list that gives the best code size
reduction. Because these passes are often included in a com-
piler sequence that offers a high code size reduction, they
are likely to be important for reducing code size. The table
also shows how often a search method chooses a pass as an
action when optimizing a benchmark. Compared to other
methods2, SuperSonic picks an important pass more often
during the search, suggesting that it learns the importance
of optimization passes.

5.4 Case Study 4: Superoptimization

Figure 6 shows the superoptimization results using LLVM
and GCC. SuperSonic outperforms Stoke and OpenTuner
on most of the test benchmarks with a higher mean speedup.
Increasing the tuning iterations (and the search time) during
2In theory, with a sufficiently larger number of samples, each pass will have
a 1/123 chance to be chosen by C.Gym.Random in Table 4.

 S
pe

ed
up

 o
ve

r
 L

LV
M

/G
CC

 -O
3

Opentuner Stoke SuperSonic

1.1
1.3

1000 1500 2000 1000 1500 2000
Tuning time (seconds)

0.85
0.9
0.95
1

AMD Intel

(a)

 S
pe

ed
up

 o
ve

r
 L

LV
M

/G
CC

 -O
3

Opentuner Stoke SuperSonic

1.1
1.3

6k 9k 12k 6k 9k 12k
Tuning iterations

0.85
0.9
0.95
1

AMD Intel

(b)

Figure 6. Speedup over LLVM/GCC -O3 for superoptimiza-
tion under different search time (a) and iterations (b).

deployment can improve the search performance because
it allows the search algorithm to explore the optimization
space better and uses feedback to improve its search strategy.
Although the STOKE developers note that their mutation
engine is notmatured enough to outperform LLVM/GCC -O3,
we demonstrate that RL can deliver noticeable improvement
by better exploring the optimization space (up to 1.34x).

Figure 7 shows a kernel from STOKE Hacker benchmark
dataset, compiled by LLVM -O3, and the best-performing
version found by SuperSonic. The SuperSonic code for the
_Z3p23i kernel is 18 lines shorter, 1.2x faster than -O3. This
is one of the many examples where the Supersonic-driven
superoptimization generates faster code over -O3.

5.5 Further Analysis

5.5.1 Compare to Other Client RL Search Strategies.

This experiment compares SuperSonic’s deep RL-basedmeta-
optimizer against four widely used parameter search tech-
niques: grid search, simulated annealing, random search, and
genetic algorithms. We set the number of search iterations to
100 for all search algorithms. We also vary the search space
by adding more candidate RL components, where the num-
ber of RL component combinations vary between 150 and
800. For a chosen RL client, we follow the same parameter
fine-tuning process to fine-tune the selected RL components
(Section 3.4). Figure 8 compares the performance of the client
RL chosen by different search algorithms during the RL client
search stage. As can be seen from the diagram, all client RL
give an averaged improvement over the baseline. Super-
Sonic finds a better client RL during the limited client RL
search budget, leading to overall better performance across
search space sizes and case studies. We note that the limited
client RL search budget restricts the performance of finding
good client RL with a large search space (e.g., when the num-
ber of RL component combinations is 800). Increasing the
search budget will allow the meta-optimizer to find a better
client RL to improve the resulting performance.

5.5.2 Deployment-stage Search Time Relative to the

Best-performing Alternative. Table 5 shows the rela-
tive search time and iteration count required by Super-
Sonic-tuned client RL to exceed the results given by the
best-performing competitive scheme. The table shows the
minimum, average, and maximum search overhead across

CC ’22, April 02–03, 2022, Seoul, South Korea H. Wang, Z. Tang, C. Zhang, J. Zhao, C. Cummins, H. Leather, and Z. Wang

1 .L_4004e0_LLVM_O3: .L_4004e0_SuperSonic:

2 movl $0x60106f ,%eax movl $0x601191 ,%

edi

3 movl $0x601191 ,%edi movq $0x400990 ,%

rcx

4 movl $0x400700 ,%edi movl $0x400700 ,%

edi

5 pushq %rax pushq %rax

6 nopl 0x0(%rax ,%rax ,1) nopl 0x0(%rax ,%rax

,1)

7

8 callq 4008f0 <_Z3p23i > callq 4008f0 <

_Z3p23i >
9
10 ._Z3p23i: ._Z3p23i:
11 movl %edi ,%eax popcntl %edi ,%ecx

12 shrl %eax movq %rcx ,%rax

13 andl $0x55555555 ,%eax retq

14 subl %eax ,%edi

15 movl %edi ,%eax

16 andl $0x33333333 ,%eax

17 shrl $0x2 ,%edi

18 andl $0x33333333 ,%edi

19 addl %eax ,%edi

20 movl %edi ,%eax

21 shrl $0x4 ,%eax

22 addl %edi ,%eax

23 andl $0xf0f0f0f ,%eax

24 movl %eax ,%ecx

25 shrl $0x8 ,%ecx

26 addl %eax ,%ecx

27 movl %ecx ,%eax

28 shrl $0x10 ,%eax

29 addl %ecx ,%eax

30 movzbl %al ,%eax

31 retq

32 nopl 0x0(%rax ,%rax ,1)

Figure 7. SuperSonic finds a better program (right) over
LLVM -O3 (left) for a STOKE Hacker kernel (_Z3p23i) that
counts the number of bits, by using the popcntl instruction.

Table 5. Search overhead required by SuperSonic to exceed
the performance given the best-performing alternative

Use

cases

% of search time (& raw numbers) % of iterations (& raw numbers)

MIN GeoMean MAX MIN GeoMean MAX

Case
study 1

3.6
(21 mins)

39.6
(4 hours)

72.1
(6 hours)

3.9
(1,425)

44.0
(15,821)

75.3
(27,141)

Case
study 2

1.0
(1 min)

39.1
(24 mins)

74.1
(45 mins)

4.2
(885)

32.3
(3,885)

68.8
(8,256)

Case
study 3

1.5
(3 sec)

31.0
(61 sec)

61.1
(2 mins)

2.1
(738)

29.7
(10,714)

83.5
(30,068)

Case
study 4

1.1
(22 sec)

32.8
(11 mins)

42.3
(14 mins)

1.2
(1,478)

36.5
(43,745)

46.9
(56,387)

test benchmarks. On average, the RL architecture found by
SuperSonic converges faster, requires less than 39.6% of the
search time used by the best-performing alternative search
algorithm to deliver better results. This means the RL archi-
tecture chosen by SuperSonic can start delivering a better
optimized code with, on average, 1.75x less search time (up

to 100x) compared the best-performing alternative tuning al-
gorithm that runs longer. While search methods like genetic
algorithms have no upfront training cost, they must search
each time afresh. SuperSonic performs a one-off offline RL
search and tuning, but the tuned client RL significantly re-
duces the search cost for any new programs after that.

5.5.3 Chosen RL Components. Table 3 shows the client
RL components chosen by SuperSonic varies from one task
to another. We also observe that the optimal RL found by
SuperSonic is consistent across cross-validation runs for a
given task. This means the client RL architecture can general-
ize across inputs of a given task. We notice that using MCTS
with DNNs for state representation gives good performance
for three out of the four tasks, but it is less effective for code
size optimization compared to PPO. Using MCTS for code
reduction gives an average reduction of 0.6% instead of 6.5%
delivered by PPO. This perhaps due to a large number of
discrete actions (i.e., the compiler passes) in the optimization
space, which requires more search time to learn a good value
function to efficiently guide the MCTS simulation.

6 Discussions

We have showcased that deep RL can be highly effective in
performance tuning, but this depends on having a suitable RL
architecture. Deep RL can benefit from knowledge learned
from other inputs (or programs). Some of this knowledge can
be transferable from one program to another. For example,
the client RL algorithm learns applying -simplifycfg (Ta-
ble 4) is always beneficial for code size reduction from train-
ing benchmarks. The RL agent thus increases Evolutionary-
based search algorithms cannot use prior knowledge and
have to start from scratch for every new program [40].

Our experiments show that evolutionary-based techniques
can outperform RL on certain test cases (Section 5.1). Be-
cause evolutionary algorithms often have a lower runtime
overhead than deep RL methods, it is interesting to see if
both methods can be combined to explore more optimiza-
tion points of the search space. For example, one can first
employ a deep RL to identify the most promising areas in
the search space and then use low-cost evolutionary algo-
rithms to perform finer-grained searches on the identified
regions. Another example is to use evolutionary algorithms
to combine and dynamically choose between multiple state
or reward functions to improve the robustness of the system.

We found themeasurement cost often dominates the search
time of an autotuner. One way of reducing the measurement
overhead is to use active learning to reduce the number of
runs when we are confident that the results are statistical
sound [63, 64]. Another strategy is to use a predictive model
to estimate outcome of runtime measurements to reduce
environment interactions.
SuperSonic searches the client RL by trying different

combinations of RL components. An interesting approach

Automating Reinforcement Learning Architecture Design for Code Optimization CC ’22, April 02–03, 2022, Seoul, South Korea

 S
pe

ed
up

 o
ve

r
 H

al
id

e
m

as
te

r
Grid Search
Random Search

Simulated Annealing
Genetic Algorithm

SuperSonic

6
12

150 400 800
Client RL search space

0.8
1.3
1.8
2.3

(a) Optimizing Image Pipelines

Sp

ee
du

p
 o

ve
r T

VM
C

Grid Search
Random Search

Simulated Annealing
Genetic Algorithm

SuperSonic

1.5
1.55

150 400 800
Client RL search space

1.1
1.2
1.3
1.4

(b) Neural Network Code Generation

Grid Search
Random Search

Simulated Annealing
Genetic Algorithm

SuperSonic

1.1
1.6

150 400 800
Client RL search space

0.9
0.95

1
1.05

Re
du

ct
io

n
ov

er

 L

LV
M

 -O
z

(c) Code size reduction

 S
pe

ed
up

 o
ve

r
 L

LV
M

/G
CC

 -O
3

Grid Search
Random Search

Simulated Annealing
Genetic Algorithm

SuperSonic

1.1
1.3

150 400 800
Client RL search space

0.85
0.9

0.95
1

(d) Superoptimization

Figure 8. Comparing the performance of a client RL chosen by different search algorithms during the client RL search stage.
We vary the number of client RL combinations by varying the number of candidate RL components. The SuperSonic chosen
client RL gives the best overall performance during deployment.

would be to combine online search and predictive modeling,
by using the profiling data collected from earlier runs to
build a predictive model to directly predict the promising RL
component combinations to reduce the search overhead.

Finally, RL often employs machine-learning (ML) models
to estimate the reward or to represent the environment state.
However, ML is brittle, and small changes in data distribution
during deployment can result in incorrect predictions. There-
fore, techniques for detecting when the model’s estimation
can be trusted is useful [71, 91].

7 Related Work

Auto-tuning techniques have been widely used to reduce
expert involvement in performance optimization tasks [88].
Early works like ATLAS [89] and FFTW [31] demonstrate
the potential for searching domain-specific optimization pa-
rameters like the loop tile size. In iterative compilation, prior
works have exploited the use of evolutionary algorithms
like the genetic algorithm [7, 8] and other search techniques
built upon Bayesian optimization [11, 17, 42, 56, 75] and
predictive modeling [4, 10, 15, 48, 67]. Recent works also ap-
ply auto-tuning techniques to optimize code generation for
deep neural networks [18, 34, 61, 92], image processing ap-
plications [69], and runtime tuning of operating system and
processor parameters [20]. Our work is among these efforts
in applying auto-tuning techniques for code optimization.
In recent years, RL (in particular deep RL) has demon-

strated impressive results in domains like game-playing
[66, 78] and robotics [6]. It has also been employed for var-
ious performance optimization tasks, including compiler
phase ordering [36], loop optimization [13], choosing vector-
ization parameters [35], task scheduling [54] and memory
placement [45]. These prior works rely on hand-tuned poli-
cies or feature engineering to derive a good search strategy
for the given application domain. Given the large number
and diversity of workloads to be optimized, approaches like
ours for automating RL architecture tuning are attractive.
CompilerGym [23] is an machine-learning platform for

compiler optimization. It provides an OpenAI Gym-like pro-
gramming environment [65]. SuperSonic utilizes Compi-
lerGym’s API for problem definition, but complements to
CompilerGym by providing ways to automate RL component

searching and tuning. We plan to integrate SuperSonic into
the mainstream release of CompilerGym.
In a relevant research area, neural architecture search

[28] aims to find the right neural network structure and
parameters to reduce the model size and execution time or
to improve accuracy [82, 93]. Our work draws aspiration
from these past foundations to find a good RL architecture
for performance optimization.

8 Conclusions

We have presented SuperSonic, a framework for building
RL-based performance tuners. SuperSonic provides the ca-
pability to automate the process of designing and tuning
RL algorithm structures. We evaluate SuperSonic by ap-
plying it to four different optimization tasks. Experimental
results show that the RL architecture found by SuperSonic
delivers better overall performance than alternative search
techniques, including hand-tuned RL strategies.
SuperSonic supports mainstream and emerging RL pro-

gramming environments like RLlib and CompilerGym. It is
designed to provide customizable interfaces to allow devel-
opers to introduce new algorithms and methods to be used in
the RL policy architecture. As the community provides more
models and methods, SuperSonic will be able to explore a
more comprehensive policy search space. As a result, there
will be less of a need to create domain-specific methods for
each project. In the long-term, we hope that SuperSonic
will work out-of-the-box for most performance developers
once they have defined their optimization tasks. We hope the
findings of this paper and the release of SuperSonic can en-
courage the adoption of RL in many other code optimization
problems.

Acknowledgments

This work was supported in part by the National Science
Foundation of China (NSFC) under grant agreements 61972314,
61872294 and 61902170, the International Cooperation Project
of Shaanxi Province under grant agreements 2021KW-04,
2020KWZ-013 and 2021KW-15, and a Meta (Facebook) re-
search award. For any correspondence, please contact Zhany-
ong Tang (Email: zytang@nwu.edu.cn) and Zheng Wang
(Email: z.wang5@leeds.ac.uk).

CC ’22, April 02–03, 2022, Seoul, South Korea H. Wang, Z. Tang, C. Zhang, J. Zhao, C. Cummins, H. Leather, and Z. Wang

Appendix: Artifacts Evaluation Instructions

A.1 Overview

Our research artefact enables the reproduction of our ap-
proach and figures from our experimental results. This doc-
ument consists of instructions for performing AE on pre-
configured notebooks (Section A.2) or Python scripts within
a docker image (Section A.3).

Main Results

OurAE enables a reduced-size evaluation for themain results
of our work, i.e., Figures 3-6 in the paper. The results compare
the performance of the client RL found by our tool against
prior search-based techniques. We also provide a small-scale
experiment to showcase how the developed techniques can
be used to search for a client RL architecture.

Artifact Check-list (Meta-information)

• Compilation: LLVM 9.0, gcc 7.5 and gcc 4.9 included
• Experiments: The experiments can be run with the
included scripts.

• How much disk space required (approximately)?:

40 GB
• How much time is needed to prepare workflow

(approximately)? : Several hours for a small-scale
evaluation and one week for a full-scale evaluation

• Publicly available? : Yes, code and data are available
at: https://github.com/HuantWang/SUPERSONIC

• Code licenses: CC-BY-4.0 License
• Archived: 10.5281/zenodo.6313660

A.2 Instructions for Interactive Notebooks

For convenience, we have provided a pre-configured Python
Jupyter Notebook within a pre-configured docker image
- see https://github.com/HuantWang/SUPERSONIC/blob/
master/AE.md for how to access the docker image.

Experiment Workflow

1. Access the Jupyter Notebook using the method de-
scribed above.

2. From the Jupyter landing page, select the checkbox
next to the notebook, i.e., AE_Intel.ipynb; then click
“Duplicate”.

3. Click the name of the newly created Jupyter Notebook,
e.g. AE_Intel-Copy1.ipynb.

4. Select “Kernel”> “Restart & Clear Out” from the menu
to reset the results.

5. Repeatedly press the play button (the tooltip is “run
cell, select below”) to step through each cell of the

notebook. Alternatively, select each cell in turn and
use “Cell” > “Run Cell” from the menu to run specific
cells. Note that some cells depend on previous cells
being executed. If any errors occur ensure all previous
cells have been executed.

Evaluation and Expected Results

Code cells within the Jupyter Notebook display their output
inline. Note that some cells can take a few minutes to hours
to complete; please wait for the results until step to the next
cell. High load can also lead to a long wait for results. This
may occur if multiple reviewers are simultaneously trying
to generate results.

Customisation

The experiments are fully customisable, the code provided in
the Jupyter Notebook can be edited on the spot. Simply type
your changes into the code blocks and re-run using “Cell” >
“Run Cells” from the menu.

A.3 Instructions for Docker Image

For a step-by-step instruction to replicate our results using
a docker image on your machine locally without the interac-
tive notebook, please refer to our GitHub repository (https://
github.com/HuantWang/SUPERSONIC/blob/master/AE.md).

A.4 Evaluation and Expected Result

The supplied notebook or scripts will automatically produce
the results or diagrams after the experiments. The AE also
includes the data used in the paper submission. The results
may be different if the experiment is performed on hardware
that differs from the ones used in the paper.

A.5 Experiment Customization

Our evaluation scripts contain customizable parameters to
change things like the number of search iterations and the
training and testing datasets used. Please follow the instruc-
tions given at https://github.com/HuantWang/SUPERSONIC/
blob/master/AE.md.

https://github.com/HuantWang/SUPERSONIC
https://github.com/HuantWang/ SUPERSONIC/blob/master/AE.md
https://github.com/HuantWang/ SUPERSONIC/blob/master/AE.md
https://github.com/HuantWang/SUPERSONIC/blob/master/AE.md
https://github.com/HuantWang/SUPERSONIC/blob/master/AE.md
https://github.com/HuantWang/SUPERSONIC/blob/master/AE.md
https://github.com/HuantWang/SUPERSONIC/blob/master/AE.md

Automating Reinforcement Learning Architecture Design for Code Optimization CC ’22, April 02–03, 2022, Seoul, South Korea

References

[1] [n. d.]. Collective Benchmark. https://ctuning.org/wiki/index.php/
CTools:CBench.

[2] [n. d.]. llvm-test-suite. https://github.com/llvm/llvm-test-suite.
[3] Andrew Adams, Karima Ma, Luke Anderson, Riyadh Baghdadi, Tzu-

Mao Li, Michaël Gharbi, Benoit Steiner, Steven Johnson, Kayvon Fata-
halian, Frédo Durand, et al. 2019. Learning to optimize halide with tree
search and random programs. ACM Transactions on Graphics (TOG)
38, 4 (2019), 1–12.

[4] Felix Agakov, Edwin Bonilla, John Cavazos, Björn Franke, Grigori
Fursin, Michael FP O’Boyle, John Thomson, Marc Toussaint, and
Christopher KI Williams. 2006. Using machine learning to focus itera-
tive optimization. In International Symposium on Code Generation and
Optimization (CGO’06). IEEE, 11–pp.

[5] Byung Hoon Ahn, Prannoy Pilligundla, Amir Yazdanbakhsh, and Hadi
Esmaeilzadeh. 2019. Chameleon: Adaptive Code Optimization for
Expedited Deep Neural Network Compilation, In International Con-
ference on Learning Representations. ICLR’20.

[6] Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin,
Bob McGrew, Arthur Petron, Alex Paino, Matthias Plappert, Glenn
Powell, Raphael Ribas, et al. 2019. Solving rubik’s cube with a robot
hand. arXiv preprint arXiv:1910.07113 (2019).

[7] Lelac Almagor, Keith D Cooper, Alexander Grosul, Timothy J Harvey,
Steven W Reeves, Devika Subramanian, Linda Torczon, and Todd Wa-
terman. 2004. Finding effective compilation sequences. ACM SIGPLAN
Notices 39, 7 (2004), 231–239.

[8] Jason Ansel, Cy Chan, Yee Lok Wong, Marek Olszewski, Qin Zhao,
Alan Edelman, and Saman Amarasinghe. 2009. PetaBricks: A Lan-
guage and Compiler for Algorithmic Choice. In Proceedings of the
30th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’09). 38–49.

[9] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-
Kelley, Jeffrey Bosboom, Una-May O’Reilly, and Saman Amarasinghe.
2014. Opentuner: An extensible framework for program autotuning. In
Proceedings of the 23rd international conference on Parallel architectures
and compilation. 303–316.

[10] Amir H. Ashouri, Andrea Bignoli, Gianluca Palermo, Cristina Silvano,
Sameer Kulkarni, and John Cavazos. 2017. MiCOMP: Mitigating the
Compiler Phase-Ordering Problem Using Optimization Sub-Sequences
and Machine Learning. ACM Trans. Archit. Code Optim. 14, 3 (2017).

[11] Amir Hossein Ashouri, Giovanni Mariani, Gianluca Palermo, Eunjung
Park, John Cavazos, and Cristina Silvano. 2016. COBAYN: Compiler
Autotuning Framework Using Bayesian Networks. ACM Trans. Archit.
Code Optim. 13, 2, Article 21 (jun 2016), 25 pages. https://doi.org/10.
1145/2928270

[12] Tal Ben-Nun, Alice Shoshana Jakobovits, and Torsten Hoefler.
2018. Neural Code Comprehension: A Learnable Representation
of Code Semantics. In Advances in Neural Information Process-
ing Systems 31, S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett (Eds.). Curran Associates, Inc., 3588–
3600. http://papers.nips.cc/paper/7617-neural-code-comprehension-
a-learnable-representation-of-code-semantics.pdf

[13] Alexander Brauckmann, Andrés Goens, and Jerónimo Castrillón. 2021.
A Reinforcement Learning Environment for Polyhedral Optimizations.
In International Conference on Parallel Architectures and Compilation
Techniques (PACT).

[14] Cameron B. Browne, Edward Powley, Daniel Whitehouse, Simon M.
Lucas, Peter I. Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego
Perez, Spyridon Samothrakis, and Simon Colton. 2012. A Survey of
Monte Carlo Tree SearchMethods. IEEE Transactions on Computational
Intelligence and AI in Games 4, 1 (2012), 1–43. https://doi.org/10.1109/
TCIAIG.2012.2186810

[15] John Cavazos, Grigori Fursin, Felix Agakov, Edwin Bonilla, Michael FP
O’Boyle, and Olivier Temam. 2007. Rapidly selecting good compiler

optimizations using performance counters. In International Symposium
on Code Generation and Optimization (CGO’07). IEEE, 185–197.

[16] Dehao Chen, Tipp Moseley, and David Xinliang Li. 2016. AutoFDO:
Automatic feedback-directed optimization for warehouse-scale appli-
cations. In 2016 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO). IEEE, 12–23.

[17] Junjie Chen, Ningxin Xu, Peiqi Chen, and Hongyu Zhang. 2021.
Efficient Compiler Autotuning via Bayesian Optimization. In 2021
IEEE/ACM 43rd International Conference on Software Engineering (ICSE).
IEEE, 1198–1209.

[18] Tianqi Chen, ThierryMoreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan,
Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze,
et al. 2018. {TVM}: An automated end-to-end optimizing compiler
for deep learning. In 13th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 18). 578–594.

[19] Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, ThierryMoreau,
Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. Learn-
ing to Optimize Tensor Programs. In Proceedings of the 32nd Interna-
tional Conference on Neural Information Processing Systems (Montréal,
Canada) (NIPS’18). 3393–3404.

[20] Concertio. [n. d.]. Concertio: Autonomous Optimization Platform.
[21] Chris Cummins, Pavlos Petoumenos, Zheng Wang, and Hugh Leather.

2017. End-to-end deep learning of optimization heuristics. In 2017
26th International Conference on Parallel Architectures and Compilation
Techniques (PACT). IEEE, 219–232.

[22] Chris Cummins, Pavlos Petoumenos, Zheng Wang, and Hugh Leather.
2017. Synthesizing Benchmarks for Predictive Modeling. In CGO.
IEEE.

[23] Chris Cummins, Bram Wasti, Jiadong Guo, Brandon Cui, Jason Ansel,
Sahir Gomez, Somya Jain, Jia Liu, Olivier Teytaud, Benoit Steiner, Yuan-
dong Tian, and Hugh Leather. 2021. CompilerGym: Robust, Performant
Compiler Optimization Environments for AI Research.

[24] Anderson Faustino da Silva, Bruno Conde Kind, José Wesley de
Souza Magalhães, Jerônimo Nunes Rocha, Breno Campos Ferreira
Guimaraes, and Fernando Magno Quinão Pereira. 2021. ANG-
HABENCH: A Suite with One Million Compilable C Benchmarks for
Code-Size Reduction. In 2021 IEEE/ACM International Symposium on
Code Generation and Optimization (CGO). IEEE, 378–390.

[25] JW Davidson, Gary S Tyson, DB Whalley, and PA Kulkarni. 2007.
Evaluating heuristic optimization phase order search algorithms. In In-
ternational Symposium on Code Generation and Optimization (CGO’07).
IEEE, 157–169.

[26] Christian Delimitrou and Christos Kozyrakis. 2014. Quasar: Resource-
Efficient and QoS-Aware Cluster Management. In 19th Intl. Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS).

[27] Yufei Ding, Jason Ansel, Kalyan Veeramachaneni, Xipeng Shen, Una-
May O’Reilly, and Saman P. Amarasinghe. 2015. Autotuning algo-
rithmic choice for input sensitivity. Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation (2015).

[28] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. 2019. Neu-
ral architecture search: A survey. The Journal of Machine Learning
Research 20, 1 (2019), 1997–2017.

[29] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng,
Ming Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming
Zhou. 2020. CodeBERT: A Pre-Trained Model for Programming and
Natural Languages. In Findings of the Association for Computational
Linguistics: EMNLP 2020. Association for Computational Linguistics,
Online, 1536–1547. https://doi.org/10.18653/v1/2020.findings-emnlp.
139

[30] Alvaro Fialho, Luis Da Costa, Marc Schoenauer, and Michele Sebag.
2010. Analyzing bandit-based adaptive operator selection mechanisms.
Annals of Mathematics and Artificial Intelligence 60, 1 (2010), 25–64.

https://ctuning.org/wiki/index.php/CTools:CBench
https://ctuning.org/wiki/index.php/CTools:CBench
https://github.com/llvm/llvm-test-suite
https://doi.org/10.1145/2928270
https://doi.org/10.1145/2928270
http://papers.nips.cc/paper/7617-neural-code-comprehension-a-learnable-representation-of-code-semantics.pdf
http://papers.nips.cc/paper/7617-neural-code-comprehension-a-learnable-representation-of-code-semantics.pdf
https://doi.org/10.1109/TCIAIG.2012.2186810
https://doi.org/10.1109/TCIAIG.2012.2186810
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139

CC ’22, April 02–03, 2022, Seoul, South Korea H. Wang, Z. Tang, C. Zhang, J. Zhao, C. Cummins, H. Leather, and Z. Wang

[31] Matteo Frigo and Steven G Johnson. 2005. The design and implemen-
tation of FFTW3. Proc. IEEE 93, 2 (2005), 216–231.

[32] Dominik Grewe, Zheng Wang, and Michael FP O’Boyle. 2013. Portable
mapping of data parallel programs to opencl for heterogeneous sys-
tems. In Proceedings of the 2013 IEEE/ACM International Symposium on
Code Generation and Optimization (CGO). IEEE, 1–10.

[33] Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. 2017.
Deep reinforcement learning for robotic manipulation with asynchro-
nous off-policy updates. In 2017 IEEE international conference on robot-
ics and automation (ICRA). IEEE, 3389–3396.

[34] Hui Guan, Xipeng Shen, and Seung-Hwan Lim. 2019. Wootz: A
Compiler-Based Framework for Fast CNN Pruning via Composability
(PLDI 2019). Association for Computing Machinery, New York, NY,
USA, 717–730. https://doi.org/10.1145/3314221.3314652

[35] Ameer Haj-Ali, Nesreen K Ahmed, Ted Willke, Yakun Sophia Shao,
Krste Asanovic, and Ion Stoica. 2020. NeuroVectorizer: End-to-end
vectorization with deep reinforcement learning. In Proceedings of the
18th ACM/IEEE International Symposium on Code Generation and Opti-
mization. 242–255.

[36] Ameer Haj-Ali, Qijing (Jenny) Huang, William S. Moses, John Xiang,
Krste Asanovic, John Wawrzynek, and Ion Stoica. 2020. AutoPhase:
Juggling HLS Phase Orderings in Random Forests with Deep Reinforce-
ment Learning. In Proceedings of Machine Learning and Systems 2020,
MLSys, Inderjit S. Dhillon, Dimitris S. Papailiopoulos, and Vivienne
Sze (Eds.).

[37] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina
Precup, and David Meger. 2018. Deep reinforcement learning that
matters. In Proceedings of the AAAI conference on artificial intelligence,
Vol. 32.

[38] Matteo Hessel, Hubert Soyer, Lasse Espeholt, Wojciech Czarnecki,
Simon Schmitt, and Hado van Hasselt. 2019. Multi-task deep reinforce-
ment learning with popart. In Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 33. 3796–3803.

[39] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term
memory. Neural computation 9, 8 (1997), 1735–1780.

[40] Qijing Huang, Ameer Haj-Ali, William Moses, John Xiang, Ion Stoica,
Krste Asanovic, and John Wawrzynek. 2020. AutoPhase: Juggling
HLS Phase Orderings in Random Forests with Deep Reinforcement
Learning. arXiv:2003.00671 [cs.DC]

[41] Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M Czar-
necki, Jeff Donahue, Ali Razavi, Oriol Vinyals, Tim Green, Iain Dun-
ning, Karen Simonyan, et al. 2017. Population based training of neural
networks. arXiv preprint arXiv:1711.09846 (2017).

[42] Tarindu Jayatilaka, Hideto Ueno, Giorgis Georgakoudis, EunJung Park,
and Johannes Doerfert. 2021. Towards Compile-Time-Reducing Com-
piler Optimization Selection via Machine Learning. Association for
Computing Machinery, New York, NY, USA. https://doi.org/10.1145/
3458744.3473355

[43] Rajeev Joshi, Greg Nelson, and Keith Randall. 2002. Denali: a goal-
directed superoptimizer. In Proceedings of the ACM SIGPLAN 2002
conference on Programming language design and implementation. 304–
314.

[44] Leslie Pack Kaelbling, Michael L Littman, and Andrew WMoore. 1996.
Reinforcement learning: A survey. Journal of artificial intelligence
research 4 (1996), 237–285.

[45] Shauharda Khadka, Estelle Aflalo, Mattias Marder, Avrech Ben-David,
Santiago Miret, Shie Mannor, Tamir Hazan, Hanlin Tang, and Somdeb
Majumdar. 2021. Optimizing Memory Placement using Evolutionary
Graph Reinforcement Learning. ICLR.

[46] Alex Krizhevsky, Ilya Sutskever, andGeoffrey EHinton. 2012. Imagenet
classification with deep convolutional neural networks. Advances in
neural information processing systems 25 (2012), 1097–1105.

[47] Prasad Kulkarni, Stephen Hines, Jason Hiser, David Whalley, Jack
Davidson, and Douglas Jones. 2004. Fast searches for effective opti-
mization phase sequences. ACMSIGPLANNotices 39, 6 (2004), 171–182.

[48] Sameer Kulkarni and John Cavazos. 2012. Mitigating the compiler
optimization phase-ordering problem using machine learning. In Pro-
ceedings of the ACM international conference on Object oriented pro-
gramming systems languages and applications. 147–162.

[49] Quoc Le and Tomas Mikolov. 2014. Distributed Representations of
Sentences and Documents. In Proceedings of the 31st International
Conference on Machine Learning (Proceedings of Machine Learning
Research, Vol. 32), Eric P. Xing and Tony Jebara (Eds.). PMLR, Bejing,
China, 1188–1196.

[50] Menghao Li, Minjia Zhang, Chi Wang, and Mingqin Li. 2020. AdaTune:
Adaptive Tensor Program Compilation Made Efficient. Advances in
Neural Information Processing Systems 33 (2020).

[51] Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox,
Ken Goldberg, Joseph Gonzalez, Michael Jordan, and Ion Stoica. 2018.
RLlib: Abstractions for distributed reinforcement learning. In Interna-
tional Conference on Machine Learning. PMLR, 3053–3062.

[52] Yang Liu, Wissam M Sid-Lakhdar, Osni Marques, Xinran Zhu, Chang
Meng, James W Demmel, and Xiaoye S Li. 2021. GPTune: multitask
learning for autotuning exascale applications. In Proceedings of the
26th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming. 234–246.

[53] Rahim Mammadli, Ali Jannesari, and Felix Wolf. 2020. Static Neural
Compiler Optimization via Deep Reinforcement Learning. In 2020
IEEE/ACM 6th Workshop on the LLVM Compiler Infrastructure in HPC
(LLVM-HPC) and Workshop on Hierarchical Parallelism for Exascale
Computing (HiPar). IEEE, 1–11.

[54] Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan,
Zili Meng, and Mohammad Alizadeh. 2019. Learning Scheduling Algo-
rithms for Data Processing Clusters. In Proceedings of the ACM Special
Interest Group on Data Communication (SIGCOMM ’19). 270–288.

[55] Henry Massalin. 1987. Superoptimizer: a look at the smallest program.
ACM SIGARCH Computer Architecture News 15, 5 (1987), 122–126.

[56] Harshitha Menon, Abhinav Bhatele, and Todd Gamblin. 2020. Auto-
tuning parameter choices in HPC applications using Bayesian opti-
mization. In 2020 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). IEEE, 831–840.

[57] Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Ef-
ficient Estimation of Word Representations in Vector Space. In 1st
International Conference on Learning Representations, ICLR 2013, Scotts-
dale, Arizona, USA, May 2-4, 2013, Workshop Track Proceedings, Yoshua
Bengio and Yann LeCun (Eds.). http://arxiv.org/abs/1301.3781

[58] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013.
Efficient Estimation of Word Representations in Vector Space.
arXiv:1301.3781 [cs.CL]

[59] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex
Graves, Timothy Lillicrap, Tim Harley, David Silver, and Koray
Kavukcuoglu. 2016. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning. PMLR, 1928–
1937.

[60] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioan-
nis Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing
atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602
(2013).

[61] Rik Mulder, Valentin Radu, and Christophe Dubach. 2021. Fast Opti-
misation of Convolutional Neural Network Inference Using System
Performance Models. In Proceedings of the 1st Workshop on Machine
Learning and Systems (Online, United Kingdom) (EuroMLSys ’21). As-
sociation for Computing Machinery, New York, NY, USA, 104–110.
https://doi.org/10.1145/3437984.3458840

[62] Ravi Teja Mullapudi, Andrew Adams, Dillon Sharlet, Jonathan Ragan-
Kelley, and Kayvon Fatahalian. 2016. Automatically scheduling halide

https://doi.org/10.1145/3314221.3314652
https://arxiv.org/abs/2003.00671
https://doi.org/10.1145/3458744.3473355
https://doi.org/10.1145/3458744.3473355
http://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://doi.org/10.1145/3437984.3458840

Automating Reinforcement Learning Architecture Design for Code Optimization CC ’22, April 02–03, 2022, Seoul, South Korea

image processing pipelines. ACM Transactions on Graphics (TOG) 35,
4 (2016), 1–11.

[63] William FOgilvie, Pavlos Petoumenos, ZhengWang, andHugh Leather.
2014. Fast automatic heuristic construction using active learning.
In International Workshop on Languages and Compilers for Parallel
Computing. Springer, 146–160.

[64] William FOgilvie, Pavlos Petoumenos, ZhengWang, andHugh Leather.
2017. Minimizing the cost of iterative compilation with active learning.
In 2017 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO). IEEE, 245–256.

[65] OpenAI. 2020. Gym: a toolkit for developing and comparing reinforce-
ment learning algorithms. https://gym.openai.com/.

[66] Jakub Pachocki, Greg Brockman, Jonathan Raiman, Susan Zhang, Hen-
rique Pondé, Jie Tang, FilipWolski, Christy Dennison, Rafal Jozefowicz,
Przemyslaw Debiak, et al. 2018. Openai five, 2018. URL https://blog.
openai. com/openai-five (2018).

[67] Eunjung Park, John Cavazos, Louis-Noël Pouchet, Cédric Bastoul, Al-
bert Cohen, and P Sadayappan. 2013. Predictive modeling in a polyhe-
dral optimization space. International journal of parallel programming
41, 5 (2013), 704–750.

[68] Marcelo Pecenin, André Murbach Maidl, and Daniel Weingaertner.
2019. Optimization of Halide Image Processing Schedules with Rein-
forcement Learning. In Anais do XX Simpósio em Sistemas Computa-
cionais de Alto Desempenho. SBC, 37–48.

[69] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain
Paris, FrédoDurand, and SamanAmarasinghe. 2013. Halide: a language
and compiler for optimizing parallelism, locality, and recomputation in
image processing pipelines. Acm Sigplan Notices 48, 6 (2013), 519–530.

[70] Prashant Singh Rawat, Aravind Sukumaran-Rajam, Atanas Rountev,
Fabrice Rastello, Louis-Noël Pouchet, and P. Sadayappan. 2018. As-
sociative Instruction Reordering to Alleviate Register Pressure. In
Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage, and Analysis (Dallas, Texas) (SC ’18). IEEE
Press, Article 46, 13 pages.

[71] Jie Ren, Lu Yuan, Petteri Nurmi, Xiaoming Wang, Miao Ma, Ling Gao,
Zhanyong Tang, Jie Zheng, and Zheng Wang. 2020. Camel: Smart,
adaptive energy optimization for mobile web interactions. In IEEE
INFOCOM 2020-IEEE Conference on Computer Communications. IEEE,
119–128.

[72] Rodrigo CO Rocha, Pavlos Petoumenos, Zheng Wang, Murray Cole,
Kim Hazelwood, and Hugh Leather. 2021. HyFM: function merging for
free. In Proceedings of the 22nd ACM SIGPLAN/SIGBED International
Conference on Languages, Compilers, and Tools for Embedded Systems.
110–121.

[73] Rodrigo CO Rocha, Pavlos Petoumenos, Zheng Wang, Murray Cole,
and Hugh Leather. 2019. Function merging by sequence alignment.
In 2019 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO). IEEE, 149–163.

[74] Rodrigo CO Rocha, Pavlos Petoumenos, Zheng Wang, Murray Cole,
and Hugh Leather. 2020. Effective function merging in the ssa form.
In Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation. 854–868.

[75] Rohan Basu Roy, Tirthak Patel, Vijay Gadepally, and Devesh Tiwari.
2021. Bliss: auto-tuning complex applications using a pool of diverse
lightweight learning models. In Proceedings of the 42nd ACM SIGPLAN
International Conference on Programming Language Design and Imple-
mentation. 1280–1295.

[76] Eric Schkufza, Rahul Sharma, and Alex Aiken. 2013. Stochastic super-
optimization. In Proceedings of the eighteenth international conference
on Architectural support for programming languages and operating
systems. 305–316.

[77] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. 2017. Proximal policy optimization algorithms. arXiv
preprint arXiv:1707.06347 (2017).

[78] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,
Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan
Kumaran, Thore Graepel, et al. 2017. Mastering chess and shogi by
self-play with a general reinforcement learning algorithm. arXiv
preprint arXiv:1712.01815 (2017).

[79] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,
Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan
Kumaran, Thore Graepel, Timothy Lillicrap, Karen Simonyan, and
Demis Hassabis. 2018. A general reinforcement learning algorithm
that masters chess, shogi, and Go through self-play. Science 362, 6419
(2018), 1140–1144. https://doi.org/10.1126/science.aar6404

[80] Mark Stephenson, Saman Amarasinghe, Martin Martin, and Una-May
O’Reilly. 2003. Meta optimization: Improving compiler heuristics with
machine learning. ACM sigplan notices 38, 5 (2003), 77–90.

[81] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning:
An introduction. MIT press.

[82] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark San-
dler, Andrew Howard, and Quoc V Le. 2019. Mnasnet: Platform-aware
neural architecture search for mobile. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2820–2828.

[83] Mircea Trofin, Yundi Qian, Eugene Brevdo, Zinan Lin, Krzysztof Choro-
manski, and David Li. 2021. MLGO: a Machine Learning Guided
Compiler Optimizations Framework. arXiv preprint arXiv:2101.04808
(2021).

[84] Hado P van Hasselt, Arthur Guez, Arthur Guez, Matteo Hessel,
Volodymyr Mnih, and David Silver. 2016. Learning values across
many orders of magnitude. In Advances in Neural Information Process-
ing Systems, D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett
(Eds.), Vol. 29.

[85] Farui Wang, Weizhe Zhang, Shichao Lai, Meng Hao, and Zheng Wang.
2021. Dynamic GPU Energy Optimization for Machine Learning Train-
ing Workloads. IEEE Transactions on Parallel and Distributed Systems
(2021).

[86] Huanting Wang, Guixin Ye, Zhanyong Tang, Shin Hwei Tan, Songfang
Huang, Dingyi Fang, Yansong Feng, Lizhong Bian, and Zheng Wang.
2020. Combining graph-based learning with automated data collection
for code vulnerability detection. IEEE Transactions on Information
Forensics and Security 16 (2020), 1943–1958.

[87] Yiming Wang, Weizhe Zhang, Meng Hao, and Zheng Wang. 2021.
Online Power Management for Multi-cores: A Reinforcement Learning
Based Approach. IEEE Transactions on Parallel and Distributed Systems
33, 4 (2021), 751–764.

[88] ZhengWang and Michael O’Boyle. 2018. Machine learning in compiler
optimization. Proc. IEEE 106, 11 (2018), 1879–1901.

[89] R Clinton Whaley and Jack J Dongarra. 1998. Automatically tuned
linear algebra software. In SC’98: Proceedings of the 1998 ACM/IEEE
conference on Supercomputing. IEEE, 38–38.

[90] Guixin Ye, Zhanyong Tang, HuantingWang, Dingyi Fang, Jianbin Fang,
Songfang Huang, and Zheng Wang. 2020. Deep program structure
modeling through multi-relational graph-based learning. In Proceed-
ings of the ACM International Conference on Parallel Architectures and
Compilation Techniques. 111–123.

[91] Shuangjiao Zhai, Zhanyong Tang, Petteri Nurmi, Dingyi Fang, Xiao-
jiang Chen, and Zheng Wang. 2021. RISE: Robust wireless sensing
using probabilistic and statistical assessments. In Proceedings of the
27th Annual International Conference on Mobile Computing and Net-
working. 309–322.

[92] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu,
Ameer Haj-Ali, Yida Wang, Jun Yang, Danyang Zhuo, Koushik Sen,
et al. 2020. Ansor: Generating high-performance tensor programs for
deep learning. In 14th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 20). 863–879.

[93] Barret Zoph and Quoc V Le. 2016. Neural architecture search with
reinforcement learning. arXiv preprint arXiv:1611.01578 (2016).

https://gym.openai.com/
https://doi.org/10.1126/science.aar6404

	Abstract
	1 Introduction
	2 Background
	2.1 Deep Reinforcement Learning
	2.2 Problem Definitions
	2.3 Multi-armed Bandit Problem

	3 Our Approach
	3.1 Overview
	3.2 Task Definition
	3.3 Client RL Search
	3.4 Client RL Parameter Tuning
	3.5 Client RL Deployment
	3.6 Measurement Engine

	4 Experimental Setup
	4.1 Case Study 1: Optimizing Image Pipelines
	4.2 Case Study 2: Neural Network Code Generation
	4.3 Case Study 3: Code Size Reduction
	4.4 Case Study 4: Superoptimization
	4.5 Client RL Architecture Search Space
	4.6 Hardware and Software Platforms
	4.7 Performance Report

	5 Experimental Results
	5.1 Case Study 1: Optimizing Image Pipelines
	5.2 Case Study 2: Neural Network Code Generation
	5.3 Case Study 3: Code Size Reduction
	5.4 Case Study 4: Superoptimization
	5.5 Further Analysis

	6 Discussions
	7 Related Work
	8 Conclusions
	References

