
Portable Mapping of Data Parallel Programs
to OpenCL for Heterogeneous Systems

Dominik Grewe Zheng Wang Michael F.P. O’Boyle
School of Informatics, University of Edinburgh

{dominik.grewe, zh.wang}@ed.ac.uk, mob@inf.ed.ac.uk

Abstract
General purpose GPU based systems are highly attractive as
they give potentially massive performance at little cost. Re-
alizing such potential is challenging due to the complexity
of programming. This paper presents a compiler based ap-
proach to automatically generate optimized OpenCL code
from data-parallel OpenMP programs for GPUs. Such an
approach brings together the benefits of a clear high lev-
el language (OpenMP) and an emerging standard (OpenCL)
for heterogeneous multi-cores. A key feature of our scheme
is that it leverages existing transformations, especially data
transformations, to improve performance on GPU architec-
tures and uses predictive modeling to automatically deter-
mine if it is worthwhile running the OpenCL code on the
GPU or OpenMP code on the multi-core host. We applied
our approach to the entire NAS parallel benchmark suite
and evaluated it on two distinct GPU based systems: Core
i7/NVIDIA GeForce GTX 580 and Core i7/AMD Radeon
7970. We achieved average (up to) speedups of 4.51x and
4.20x (143x and 67x) respectively over a sequential base-
line. This is, on average, a factor 1.63 and 1.56 times faster
than a hand-coded, GPU-specific OpenCL implementation
developed by independent expert programmers.

Categories and Subject Descriptors D.3.4 [Program-
ming Languages]: Processors—Compilers

General Terms Experimentation, Languages, Measure-
ment, Performance

Keywords GPU, OpenCL, Machine-Learning Mapping

1. Introduction
Heterogeneous systems consisting of a host multi-core and
GPU are highly attractive as they give potentially massive

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
CGO ’13 23-27 February 2013, Shenzhen China.
978-1-4673-5525-4/13/$31.00 c©2013 IEEE. . . $15.00

performance at little cost. Realizing such potential, however,
is challenging due to the complexity of programming. User-
s typically have to identify potential sections of their code
suitable for SIMD style parallelization and rewrite them in
an architecture-specific language. To achieve good perfor-
mance, significant rewriting may be needed to fit the GPU
programming model and to amortize the cost of commu-
nicating to a separate device with a distinct address space.
Such programming complexity is a barrier to greater adop-
tion of GPU based heterogeneous systems.

OpenCL is emerging as a standard for heterogeneous
multi-core/GPU systems. It allows the same code to be ex-
ecuted across a variety of processors including multi-core
CPUs and GPUs. While it provides functional portability
it does not necessarily provide performance portability. In
practice programs have to be rewritten and tuned to deliver
performance when targeting new processors [16]. OpenCL
thus does little to reduce the programming complexity barri-
er for users.

High level shared memory programming languages such
as OpenMP are more attractive. They give a simple upgrade
path to parallelism for existing programs using pragmas. Al-
though OpenMP is mainly used for programming shared
memory multi-cores, it is a high-level language with little
hardware specific information and can be targeted to oth-
er platforms. What we would like is the ease of program-
ming of OpenMP with the GPU availability of OpenCL that
is then optimized for a particular platform and gracefully
adapts to GPU evolution. We deliver this by developing a
compiler based approach that automatically generates opti-
mized OpenCL from a subset of OpenMP. This allows the
user to continue to use the same programming language,
with no modifications, while benefiting automatically from
heterogeneous performance.

The first effort in this direction is [17]. Here, the OpenM-
PC compiler generates CUDA code from OpenMP program-
s. While promising, there are two significant shortcomings
with this approach. Firstly, OpenMPC does not apply data
transformations. As shown in this paper data transformation
are crucial to achieve good performance on GPUs. Second-
ly, the programs are always executed on GPUs. While GPUs

#pragma omp parallel for
f o r (i =1 ; i<g r i d p o i n t s [0]−1; i ++){

f o r (j =1 ; j<g r i d p o i n t s [1]−1; j ++){
f o r (k =1; k<g r i d p o i n t s [2]−1; k++){

. . .
l h s [i] [j] [k] [0] [0] [0] = . . . ;
l h s [i] [j] [k] [0] [0] [1] = . . . ;
. . .

} } }

k e r n e l void l h s y L 1 (. . .) {
i n t k = g e t g l o b a l i d (0) + 1 ;
i n t j = g e t g l o b a l i d (1) + 1 ;
i n t i = g e t g l o b a l i d (2) + 1 ;
. . .
l h s [i] [j] [k] [0] [0] [0] = . . . ;
l h s [i] [j] [k] [0] [0] [1] = . . . ;
. . .
}

W A

S
pe

ed
up

0
2

4
6

8

Intel Core i7 (OpenMP)
ATI Radeon (OpenCL)
NVIDIA GeForce (OpenCL)

(a) Original OpenMP (b) Non-optimized OpenCL (c) Before optimizations

#pragma omp parallel for
f o r (i =1 ; i<g r i d p o i n t s [0]−1; i ++){

f o r (j =1 ; j<g r i d p o i n t s [1]−1; j ++){
f o r (k =1; k<g r i d p o i n t s [2]−1; k++){

. . .
l h s [0] [0] [0] [i] [j] [k] = . . . ;
l h s [0] [0] [1] [i] [j] [k] = . . . ;
. . .

} } }

k e r n e l void l h s y L 1 (. . .) {
i n t k = g e t g l o b a l i d (0) + 1 ;
i n t j = g e t g l o b a l i d (1) + 1 ;
i n t i = g e t g l o b a l i d (2) + 1 ;
. . .
l h s [0] [0] [0] [i] [j] [k] = . . . ;
l h s [0] [0] [1] [i] [j] [k] = . . . ;

. . .
}

W A

S
pe

ed
up

0
2

4
6

8

Intel Core i7 (OpenMP)
ATI Radeon (OpenCL)
NVIDIA GeForce (OpenCL)

(d) Transformed OpenMP (e) Optimized OpenCL (f) After optimizations

Figure 1: Simplified example of generating OpenCL code from OpenMP code. The top left code (a) snippet is taken from bt.
The corresponding OpenCL code (b) delivers poor performance on both GPUs (c). After applying data transformation to the
OpenMP code (d), we obtain the new OpenCL code shown in (e). The performance of both GPUs improves significantly, but
only for large inputs can they outperform the multi-core CPU (f).

may deliver improved performance, they are not always su-
perior to CPUs [4, 18]. A technique for determining when
GPU execution is beneficial is needed. This paper addresses
both of these issues and when evaluated on the full NAS par-
allel benchmarks our technique outperforms OpenMPC by a
factor of 10.

A key feature of our scheme is that it uses predictive mod-
eling to automatically determine if it is worthwhile running
the code on the GPU or the multi-core host. Furthermore, it
can adapt this model to GPU evolution. This means that the
user can use the same OpenMP code on different platforms
with the compiler determining the best place for code to run
and optimize it accordingly.

This paper’s technical contributions can be summarized
as follows. It is the first to:
• automatically map all NAS parallel benchmarks, some

of which are up to 3600 lines long with 66 kernels.
• use cost based dynamic data alignment for GPUs
• use predictive modeling to decide between different im-

plementation languages on heterogeneous platforms
• outperform hand-coded OpenCL implementation

across different programs and architectures.

2. Motivation
With the massive interests in GPUs, it is important to know
that GPUs are not always the most suitable device for scien-
tific kernels. This section provides a simple example demon-
strating whether or not it is profitable to use a GPU depends

on the original program, data size and the transformations
available.

Consider the OpenMP fragment in figure 1a from the
NAS parallel benchmark bt, a benchmark containing over
50 parallel loops potentially suitable for offloading to a GPU.
Using our basic OpenMP to OpenCL translator yields the
code shown in 1b. The parallel loop has been translated into
a kernel where each of the loops is parallelized forming a
3D parallel work-item space each point of which is accessed
through a call to get global id for dimensions 0, 1 and 2.

This code if executed on a GPU with the small W data
size however gives disappointing performance when com-
pared to executing the code on a multi-core as shown in fig-
ure 1c. If we execute the same code with a larger data size A,
the GPU performance improves but is still less than the per-
formance achieved on the multi-core. The main reason is the
memory access pattern of the kernel which does not allow
for memory coalescing on the GPU. This can be changed by
performing global index reordering as shown in 1d, trans-
forming the data layout of array lhs. This gives the new
OpenCL program shown in 1e. Here the most rapidly vary-
ing indexes of the array correspond to the tile IDs giving
coalesced memory accesses. In figure 1f we see that the re-
sulting performance of the GPU code improves substantially
for data size W. If this transformed code is executed with a
larger data size A, the GPU performance further improves,
with both GPUs now outperforming the multi-core OpenMP
implementation.

OpenMP
Program

Kernel
Extraction

Code
Optimisation

OpenCL Code
Generation

Feature
Extraction

ML Model
Library

OpenCL
Code

Code Merge

Code
Features

Output

Figure 2: Compile time: Our compiler identifies kernels within the OpenMP program and performs several optimizations before
generating the OpenCL code. This code is passed to our feature extraction tool to collect code features. In the final step the
original OpenMP code, generated OpenCL code, code features and a machine learning (ML) model that is built off-line are
merged into a single output program.

This example shows that the translated OpenCL code can
give better performance than the original OpenMP code de-
pending on the data size and transformations available. As
described in section 8, this decision varies from program to
program and across different platforms and data sizes. What
we would like is a system that learns when to use the GPU,
changing its decision based on the availability of underly-
ing optimizations such as data layout transformations. In the
remainder of the paper we describe the translation and op-
timizations applied and develop a predictor that determines
whether to exploit the GPU depending on circumstances.

3. Overall Scheme
Our compiler automatically translates OpenMP programs
to OpenCL-based code, performing loop and array layout
optimizations along the way. It generates multi-versioned
code, the original OpenMP parallel loop and an optimized
OpenCL kernel alternative. At runtime, a predictive model
decides which version to use for execution. Our prototype
compiler is implemented using Clang and LLVM.

Compile-Time Figure 2 gives an overview of our ap-
proach. The OpenMP program is read in and parallel loops
are optimized and translated to OpenCL kernels. The gener-
ated kernels are passed to a feature extraction phase which
collects characteristics or features of the generated code.
These features are later used by the predictive model to s-
elect whether the OpenMP loop or OpenCL kernel version
is best (see section 6). The features, together with the gen-
erated OpenCL code, the original OpenMP code and a ma-
chine learning (ML) predictor built off-line (see section 5) are
merged into a single output program source.

Run-Time At execution, the generated program first up-
dates the parameterized features based on the runtime values
of parameters and passes the updated features to the ML mod-
el. The built-in model then predicts where to run the program
and to pick either the OpenMP code for the multi-core CPU
or the OpenCL code for the GPU.

Evaluating the model at runtime involves on the order of
tens of operations and is thus negligible.

4. Code Generation and Optimization
Our framework currently converts OpenMP parallel loop-
s, i.e. loops that are annotated with omp for or omp for

reduction, into OpenCL kernels. A standard two-stage al-

gorithm [2] is used to translate a parallel reduction loop.
Other parallel OpenMP directives associated with task paral-
lelism are not currently supported. Each parallel omp loop is
translated to a separate kernel using the OpenCL APIs where
each iterator is replaced by a global work-item ID.

For each parallel loop, we outline the loop body and gen-
erate two versions for it: an OpenCL and an OpenMP ver-
sion. The original loop body is replaced with a function
pointer which points to either the OpenCL or the OpenMP
version of the loop. Each generated program has a predic-
tion function that decides where the code is to run and set
the function pointers to the corresponding version. This is
described in section 5.

For each array that is used by both the host and the GPU
we manage two copies: one on the host memory and the
other on the GPU memory. Our runtime records the status
of each variable and checks whether the copy on a device
memory space is valid or not. No memory transfer is needed
as long as the copy in the target memory space is valid.

4.1 OpenCL Code Optimization

Our compiler performs a number of optimizations to im-
prove the performance of the OpenCL code on the GPU.
They are applied in the following order:

Loop Interchange High memory bandwidth on GPUs can
only be achieved when memory accesses are coalesced,
i.e. adjacent threads access adjacent memory locations in
the GPU off-chip memory. Our framework applies loop in-
terchange to place outermost those iterators that occur most
frequently in the innermost array subscripts. We use a classi-
cal loop dependence algorithm [14] to detect to which level
the nested loop can be interchanged.

Global Index Reordering Global index reordering is the
data structure equivalent of loop reordering. Indexes of an ar-
ray are permuted to fit an optimization purpose. This trans-
formation is necessary when loop interchange cannot pro-
vide memory coalescing. An example of this transformation
was shown in figure 1: [i, j, k, 0, 0, 0] 7→ [0, 0, 0, i, j, k].

Memory Load Reordering In the original OpenMP pro-
grams, some accesses of read-only buffers can be reordered
to form a sequence of consecutive load operations which can
be vectorized. Our compiler automatically detects those can-
didates and replaces scalar load operations with an OpenCL

vector load. This can improve the memory performance of
the generated OpenCL code.

Register Promotion On many occasions, a global memo-
ry scalar variable (or array) is accessed multiple times by a
single OpenCL kernel. To reduce global memory latencies,
our tool automatically creates a private register object for
such variables. It generates code to load the data from the
global memory to the private register copy (or write back to
the global memory from the register for the last store opera-
tion). This allows the generated OpenCL kernel to reuse the
object in the private register multiple times and the global
memory operation only needs to be performed once.

Prefetching and Local Memory Optimization Our com-
piler automatically identifies read-only buffers that are used
by multiple GPU threads and generates code to prefetch
those buffers to local memory. Exploiting local memory re-
duces the memory latencies for GPU kernels.

4.1.1 Dynamic Index Reordering

In conjunction with loop interchange global index reorder-
ing is often sufficient to achieve memory coalescing. How-
ever, in some cases there is no clear best global data lay-
out, e.g. when different loops in a program require different
layouts to achieve memory coalescing. We then consider dy-
namic index reordering [5].

Before entering a code region containing loops that prefer
a certain index order for an array X (different from the
global one), a reordered copy of the array, X ′, is created.
Within the code region all references to X are redirected to
X ′ and the indexes are reordered appropriately. At the end
of the region the data gets copied back to the original array.

Dynamic index reordering for GPU computing can often
be prohibitive. The transformation should only be applied
if the benefits of data coalescing outweigh the costs of data
reordering. To be used in a compiler setting we therefore
need a mechanism to automatically determine when this
transformation should be applied. Section 6 describes a data-
driven approach that solves this problem.

5. Predicting the Mapping
A crucial part of our approach is to automatically determine
the best location for the input program i.e. should it be run on
the multi-core host or translated into OpenCL and executed
on the GPU. Our approach is to generate the OpenCL-based
code and then use a model to see if this is profitable to run
on a GPU. If it is not profitable, we fall back to the original
OpenMP code. As this decision will vary greatly depending
on GPU architecture and the maturity of the OpenCL run-
time, we wish to build a portable model that can adapt to the
change of the architecture and runtime.

Our model is a decision tree classifier where at every node
of the tree a decision is made whether to follow the left or the
right child. We used the C4.5 algorithm [22] to automatically
construct the decision tree from training data by correlating

Raw Code Features
comp # compute operations
mem # accesses to global memory
localmem # accesses to local memory
coalesced # coalesced memory accesses
transfer amount of data transfers
avgws average # work-items per kernel

(a) Individual code features

Combined Code Features
F1: transfer/(comp+mem) commun.-computation ratio
F2: coalesced/mem % coalesced memory accesses
F3: (localmem/mem)× avgws ratio local to global mem accesses ×

avg. # work-items per kernel
F4: comp/mem computation-mem ratio

(b) Combinations of raw features

Table 1: List of code features.

the features to the best device. Section 8.4 shows an example
of such a decision tree and its evaluation.

We wish to avoid any additional profiling runs or exhaus-
tive search over different data sets, so our decision is based
on static compiler analysis of the program structure and run-
time parameters. The static analysis characterizes a kernel as
a fixed vector of real values, or features (see below).

5.1 Training the Predictor

The training process involves the collection of training data
which is used to fit the model to the problem at hand. In our
case we use a set of programs that are each executed on the
CPU and the GPU to determine the best device in each case.
We also extract code features for each program as described
in the following section. The features together with the best
device for each program from the training data are used to
build the model. Since training is only performed once at the
factory, it is a one-off cost. In our case the overall training
process takes less than a day on a single machine.

5.2 Code Features

Our predictor is based on code features (table 1a). These
are selected by the compiler writer and summarize what are
thought to be significant costs in determining the mapping.
At compile time we analyze the OpenCL code and extract
information about the number and type of operations. Dou-
ble precision floating point operations are given a higher
weight (4x) than single precision operations. We also ana-
lyze the memory access pattern to determine whether an ac-
cess to global memory is coalesced or not. A potential fea-
ture is the amount of control flow in an application. While
this feature can have an impact on performance on the GPU
it was not relevant for the benchmarks we considered. It is
thus not included in our feature set.

Instead of using raw features, we group several features
to form combined normalized features that carry more infor-
mation than their parts (as shown in table 1b).

5.2.1 Collecting Training Data

We use two sets of benchmarks to train our model. First we
use a collection of 47 OpenCL kernels taken from various
sources: SHOC [7], Parboil [21], NVIDIA CUDA SDK [20]
and AMD Accelerated Parallel Processing SDK [2]. These
benchmarks are mostly single precision with only one kernel
in each program whereas the NAS benchmarks are double
precision and have multiple kernels. We thus also add the
NAS benchmarks to our training set, but exclude the one that
we make a prediction for (see section 7.2).

5.3 Runtime Deployment

Once we have built the ML model as described above, we can
insert the model together with the code features (extracted
at compile time) to the generated code for any unseen, new
programs, so that the model can be used at runtime.

Updating Features As some loop bounds are dependent
on the tasks’ input data, the compiler may not be able to
determine the value of certain features. In this case our
compiler represents these features with static symbolic pre-
computation of loop bound variables. At execution time,
these features are updated using runtime values.

Version Selection The first time a kernel is called the
built-in predictive model selects a code version for execu-
tion. It uses updated features to predict the best device to run
the program and sets the function pointer of each parallel
loop to the corresponding code version. In our current im-
plementation, prediction happens once during a program’s
execution. The overhead of prediction is negligible (a few
microseconds). This cost is included in our later results.

6. A Model for Dynamic Index Reordering
In section 4.1.1 we described the dynamic index reorder-
ing transformation. This transformation can greatly improve
performance on the GPU but it can also lead to slow-downs
if the cost of reordering the data is higher than the bene-
fits. Because the point at which the benefits outweigh the
costs is highly machine-dependent we are using a portable
machine learning approach that can be easily adapted to d-
ifferent systems. Similar to predicting the mapping we use a
decision tree classifier. The features are the size of the data
structure and the ratio between the number of accesses to the
data structure and its size.

We use micro benchmarks to obtain the training data for
this problem.1 Given a simple kernel accessing an array in
a non-coalesced way we vary the array size and the number
of times the kernel is called, thereby changing the number
of accesses to the array. We measure the execution time with
and without applying dynamic index reordering to determine
whether it is beneficial in each case. Evaluating the bench-

1 We opted for micro benchmarks because the amount of training data from
real applications is limited.

Intel CPU NVIDIA GPU AMD GPU
Model Core i7 3820 GeForce GTX 580 Radeon 7970
Core Clock 3.6 GHz 1544 MHz 925 MHz
Core Count 4 (8 w/ HT) 512 2048
Memory 12 GB 1.5 GB 3 GB
Peak Performance 122 GFLOPS 1581 GFLOPS 3789 GFLOPS

Table 2: Hardware platform

marks and then building the decision tree model takes less
than half an hour.

The resulting model is embedded into each output pro-
gram because array dimensions and loop bounds may not be
known at compile time. We thus keep two versions of each
candidate kernel: the original one and one with accesses re-
ordered. At runtime one of them gets picked by the model.

7. Experimental Methodology
7.1 Experimental Setup

Platforms We evaluate our approach on two CPU-GPU
systems: both use an Intel Core i7 6-core CPU. One system
contains an NVIDIA GeForce GTX 580 GPU, the second an
AMD Radeon 7970. Both run with the Ubuntu 10.10 64-bit
OS. Table 2 gives detailed information on our platforms.

Benchmarks All eight of the NAS parallel benchmark-
s (v2.3) [1] were used for evaluation. Unlike many GPU
benchmarks that are single precision, all the benchmarks ex-
cept is are double precision programs.

7.2 Methodology

We considered all input sizes (S, W, A, B, C) for each NAS
benchmark as long as the required memory fits into the
GPU memory. All programs have been compiled using GCC
4.4.1 with the ”-O3” option. Each experiment was repeated
5 times and the average execution time was recorded.

We use leave-one-out cross-validation to train and eval-
uate our machine-learning model for predicting the map-
ping. This means we remove the target program to be pre-
dicted from the training program set and then build a model
based on the remaining programs. We repeat this procedure
for each NAS benchmark in turn. It is a standard evaluation
methodology, providing an estimate of the generalization a-
bility of a machine-learning model in predicting an unseen
program. This approach is not necessary for the dynamic in-
dex reordering model because we use micro benchmarks as
training data rather than the programs themselves.

8. Experimental Results
In this section we evaluate our approach on two separate het-
erogeneous systems for the NAS parallel benchmark suite.
We first show the performance of our predictive modeling
approach compared to using always the multi-core CPU or
always the GPU. This is followed by a comparison to a man-
ual OpenCL implementation of the NAS benchmark suit-
e [23] and OpenMPC [17], the closest related prior work,
showing performance improvements of 1.4x and 10x respec-
tively. We then take a closer look at the predictive model

and the dynamic index reordering transformation. Finally we
present a brief evaluation of our approach on two heteroge-
neous systems with integrated GPUs.

8.1 Performance Evaluation

Figures 3 and 4 show speedups for the NAS benchmarks on
the two heterogeneous systems described in section 7. For
each benchmark-input pair the multi-core CPU performance,
the GPU performance and the performance of the device se-
lected by our predictor is shown. The last column represents
the average performance (using the geometric mean) of each
approach as well as of the “oracle” which always picks the
best device in each case. The performance numbers present-
ed are speedups over single-core execution.

On both systems significant speedups can be achieved
by selecting the right device, CPU or GPU. When always
selecting the faster of the two speedups of 4.70x on the
NVIDIA system and 4.81x on the AMD system can be
achieved. This compares to 2.78x and 2.74x when always
using the multi-core CPU2 and 1.19x and 0.71x on the GPU.

The results show that speedups vary dramatically be-
tween CPU and GPU and none of the devices consistent-
ly outperforms the other. On ep, for example, an embar-
rasingly parallel benchmark, the GPU clearly outperforms
the multi-core CPU: up to 11.6x on NVIDIA and 30.2x on
AMD. However, on other benchmarks, such as is or lu the
CPU is significantly faster. In the case of lu this is because
the OpenMP version exploits pipeline parallelism using a
combination of asynchronous parallel loops and a bit-array
to coordinate pipeline stages. The current SIMD-like execu-
tion models of GPUs are not designed to exploit this type of
parallelism. The is benchmark does not perform significant
amount of computation and GPU execution is dominated by
communication with the host memory. This leads to under-
utilization of the GPU and thus bad performance.

For benchmarks bt, cg and sp we observe that the CPU
is faster for small inputs but the GPU is better on larger in-
put sizes. This behavior is to be expected because GPUs re-
quire large amounts of computation to fully exploit their re-
sources. On small inputs the overheads of communication
with the host dominate the overall runtime when using the
GPU. A similar pattern is shown for ft and mg: GPU per-
formance is stronger for larger inputs. However, the GPU is
not able to beat the CPU even for the largest input sets. For
is, because the program does not have enough parallelism,
it is actually not worthwhile to run it in parallel for any giv-
en data set on our platforms. This is also reported in other
studies [24].

These observations show the need for a careful mapping
of applications to devices. Our model for predicting the
mapping is able to choose the correct device almost all of the

2 Even though the same CPU was used in both cases the numbers vary s-
lightly because the benchmarks sets are different due to memory constraints
on the GPUs.

time. On the NVIDIA system it incorrectly picks the GPU
for benchmark sp.W and on the AMD system it picks the
GPU for ft.A even though the CPU is faster. Overall we are
able to achieve speedups of 4.63x and 4.80x respectively.
This is significantly better than always choosing the same
device and not far off the performance of the “oracle”.

8.2 Comparison to State-of-the-Art

We compared our approach to two others: OpenMPC [17], a
compiler translating OpenMP to CUDA, and the SNU NPB
suite [23] which provides independently hand-written Open-
CL implementations of the NAS parallel benchmarks. The
results are shown in figure 5. Because OpenMPC generates
CUDA code, we only evaluated it on the NVIDIA platform.
We were unable to generate code for benchmarks is, lu and
mg using OpenMPC.

With the exception of ep, the OpenMPC generated code
performs poorly compared to the other approaches. It only
achieves a mean speedup of 0.42x, i.e. slower than sequen-
tial execution. The main reason is that OpenMPC does not
perform any kind of data transformation, leading to unco-
alesced memory accesses in many cases. On average, our
approach outperforms OpenMPC by a factor of 10.

The SNU implementation shows significantly better per-
formance than OpenMPC but it is only able to outperform
our approach on ft and mg on the NVIDIA platform and
only on ft on the AMD platform. On average it achieves a
speedup of 3.01x on NVIDIA and 2.02x on AMD compared
to 4.18x and 4.22x of our predictive modeling approach.
There are two reasons why we are able to outperform the
hand-written versions of the benchmarks. Firstly, we perfor-
m aggressive data restructuring, including dynamic index re-
ordering, which is especially important for benchmarks bt

and sp. Secondly, we are able to detect when using the CPU
over the GPU is the better option. So while the SNU code
may be faster than the OpenCL code generated by our ap-
proach for some benchmarks (as we will show in the next
section), we are often able to provide better performance by
choosing not to use the GPU but the CPU.

We also tried to evaluate the benchmarks using the
OpenACC standard. However, some OpenMP features,
e.g. thread-private variables, are not supported by OpenAC-
C and the compiler infrastructure is not very mature. Sub-
stantial effort in rewriting the code as well as more mature
compilers are required to perform a fair comparison.

8.3 OpenCL Code Performance Comparison

Figure 6 compares the generated OpenCL code to the hand-
written SNU implementation. We factor out the predictive
model and focus solely on the quality of the generated Open-
CL code. We selected the largest possible input size for each
benchmark.

The data show mixed results. For benchmarks bt and sp

our code outperforms the hand-written code. This is mainly
due to the data restructuring by our compiler. For cg, ep and

b
t.
S

b
t.
W

b
t.
A

cg
.S

cg
.W

cg
.A

cg
.B

cg
.C

e
p
.S

e
p
.W

e
p
.A

e
p
.B

e
p
.C

ft
.S

ft
.W ft
.A

is
.S

is
.W is
.A

is
.B

lu
.S

lu
.W

lu
.A

lu
.B

lu
.C

m
g
.S

m
g
.W

m
g
.A

m
g
.B

s
p
.S

s
p
.W

s
p
.A

s
p
.B

m
e
a
n

S
p
e
e
d
u
p

0
3

6
9

Intel Core i7 (OpenMP)
NVIDIA GeForce (OpenCL)
Predictive Model
Oracle

72x 73x 76x 78x 78x

Figure 3: Performance of OpenMP on Intel CPU, OpenCL on NVIDIA GeForce GPU and the version selected by our predictive
model. The predictive model outperforms the CPU-only approach by 1.69x and the GPU-only approach by 3.9x.

b
t.
S

b
t.
W

b
t.
A

cg
.S

cg
.W

cg
.A

cg
.B

cg
.C

e
p
.S

e
p
.W

e
p
.A

e
p
.B

e
p
.C

ft
.S

ft
.W ft
.A

is
.S

is
.W is
.A

is
.B

lu
.S

lu
.W

lu
.A

lu
.B

lu
.C

m
g
.S

m
g
.W

m
g
.A

m
g
.B

sp
.S

sp
.W

sp
.A

sp
.B

sp
.C

m
e
a
n

S
p
e
e
d
u
p

0
3

6
9

Intel Core i7 (OpenMP)
AMD Radeon (OpenCL)
Predictive Model
Oracle

29x
50x

145x
184x

202x

Figure 4: Performance of OpenMP on Intel CPU, OpenCL on AMD Radeon GPU and the version selected by our predictive
model. The predictive model outperforms the CPU-only approach by 1.76x and the GPU-only approach by 6.8x.

bt cg ep ft is lu mg sp mean

S
pe

ed
up

0
4

8

OpenMPC
SNU
Predictive Model

30x 29x 74x

(a) NVIDIA GeForce

bt cg ep ft is lu mg sp mean

S
pe

ed
up

0
4

8

SNU
Predictive Model

35x 95x

(b) AMD Radeon

Figure 5: Speedup averaged across inputs of the OpenMPC
compiler (NVIDIA only), the manual SNU implementation
of the NAS parallel benchmarks and our predictive model.

ft the speedups are similar. On the remaining benchmarks,
is, lu and mg, our generated code is not as good as the SNU
implementation.

The SNU version of lu uses a different algorithm than the
original OpenMP code [23, Section 3.1]. Their implementa-
tion uses a hyperplane algorithm which is much more suited
for GPU execution. Changing the algorithm is obviously out
of the scope of our approach. For is the SNU implemen-
tation uses atomic operations to compute a histogram and
a parallel prefix sum algorithm which is not exposed in the
OpenMP code. Theses types of optimizations are beyond the

scope of a compiler. The code for mg works on highly irregu-
lar multi-dimensional data structures. In the generated code
these data structures are flattened and indirection in each di-
mension is used to navigate through the data. The SNU im-
plementation uses a different approach that requires a single
level of indirection which leads to vastly improved perfor-
mance. For ft, the SNU code removes the array boundary
checks in the primary reduction loop because the program-
mer knows it is safe to do so for certain inputs. This results in
better GPU performance as branch overhead is eliminated.

Overall our generated OpenCL code performs well. The
hand-coded versions generally only perform better when al-
gorithmic changes or code restructuring is performed which
is beyond the scope of a compiler.

8.4 Analysis of Predictive Model

Figures 7 and 8 show the decision trees constructed for the t-
wo systems by excluding bt from the training set. The learn-
ing algorithm automatically places the most relevant features
at the root level and determines the architecture-dependent
threshold for each node. All this is done automatically with-
out the need of expert intervention.

As an example, the features for benchmark bt are shown
in table 3.3 We show the features both before and after ap-
plying data transformations according to the example shown
in section 2. This demonstrates the impact of the transforma-
tions on the mapping decision.

3 The feature values for all benchmarks can be found at http://

homepages.inf.ed.ac.uk/s0898672/cgo2013-features.tgz.

bt cg ep ft is lu mg sp

S
pe

ed
up

0
4

8
SNU
OpenCL

76x 78x

(a) NVIDIA GeForce

bt cg ep ft is lu mg sp

S
pe

ed
up

0
4

8

SNU
OpenCL

192x 202x 15x

(b) AMD Radeon

Figure 6: Speedup of the SNU implementation and our gen-
erated OpenCL code for the largest possible input size.

At the root of the tree in figure 7 we look at the value for
the communication-computation ratio (F1). In all versions
the value is far below the threshold. We thus proceed to the
left subtree until reaching the fourth level of the tree. This
node looks at the percentage of coalesced memory access-
es (F2). Without data transformations none of the accesses
are coalesced and the left branch is taken, eventually leading
to CPU execution. With data transformations memory coa-
lescing has been improved (see bold values in table 3b). For
input sizes S and W the percentage of coalesced accesses is
less than 80%. For A almost all accesses are coalesced due
to dynamic index reordering (see section 4.1.1). All values
are above the threshold so the right branch is taken. We fol-
low the same branches until another node of F2 is reached.
This time the threshold is higher, namely 0.9. For input sizes
S and W the left branch is taken which leads to execution on
the CPU. For the larger input size A we take the right branch
and eventually reach a node predicting to run on the GPU.
All programs get mapped to the right device.

Figure 8 shows the decision tree constructed for the AMD
Radeon system. The first node also looks at the ratio between
communication and computation. The threshold is lower
(0.03), but for all versions of bt the ratio is still below the
threshold. The same path is followed by all versions until the
fourth level of the tree is reached. At this point we look at
the percentage of coalesced accesses. The versions without
data transformations are mapped to the CPU because none
of the accesses are coalesced. Even when applying data
transformations, for input sizes S and W the value is below
the threshold and the code gets mapped to the CPU. Only
input size A is mapped to the GPU. All programs are again
mapped to the right device.

8.5 Dynamic Index Reordering

The benchmarks bt and sp contain candidate regions for
dynamic index reordering. Figure 9 shows the performance
of the benchmarks with different input sizes when applying

F1 F2 F3 F4
S 0.0020 0 0 0.81
W 0.0004 0 0 0.82
A 0.0003 0 0 0.82

(a) w/o data transformations

F1 F2 F3 F4
S 0.0020 0.731 0 0.81
W 0.0004 0.780 0 0.82
A 0.0003 0.999 0 0.82

(b) w/ data transformations

Table 3: Features of bt

GPU

F1 (Commun. - Computation Ratio) < 0.69

F4 (Computation – Mem Ratio) < 12

F3 (% Local Mem Access Avg. #Work-items per Kernel) < 29

F2 (% Coalesced Mem Access) < 0.70

F4 < 6.50

GPU

F3 < 0.05

F4 < 1.40

CPU

GPU

CPU

F2 < 0.9

F1 < 1.4E-02CPU

GPU

F4 < 1.40

GPU CPU
CPU GPU

C3 : BT.A, BT.B
(w/ data transformations)

C2: B.S, B.W
(w/ data transformations)

NoYes

C1: BT.S, BT.W, BT.A, BT.B
(w/o data transformations)

F3 < 9

Figure 7: The model used for bt on NVIDIA GeForce.
Predictions for bt with and without data transformations are
marked as C1, C2 and C3.

C2: BT.A
(w/ data transformations)

F1 (Commun. - Computation Ratio) < 0.03

F4 (Computation – Mem Ratio) < 7.65

F3 < 21

F2 (% Coalesced Mem Access) < 0.99

F3 (% Local Mem Access Avg. #Work-
items per Kernel) < 3300

CPU GPU

CPU GPU

F3 < 0.02

GPUF4 < 134

GPUF4 < 30

GPU CPU

NoYes

C1:
BT.S, BT.W
(w/ data transformations)
BT.S, BT.W, BT.A
(w/o data transformations)

GPU

Figure 8: The model used for bt on AMD Radeon. Pre-
dictions for bt with and without data transformations are
marked as C1 and C2.

dynamic index reordering to none, the first or the second of
those regions. The performance is normalized to the runtime
when the transformation is not applied. In each case the run-
time is broken up into the runtimes for the two candidate
code regions, the overhead of the transformation (if applica-
ble) and the rest of the program.

The first candidate region makes up only a small frac-
tion of the overall runtime of both benchmarks; 1-3% on the
NVIDIA and 1-11% on the AMD system. When applying
dynamic index reordering here the performance of this re-
gion barely improves, because there are not many memory
accesses that benefit from the transformation. The cost of
reordering the data thus often outweighs the benefits which
leads to minor slow-downs overall.

The second region, on the other hand, makes up a larger
chunk of the overall runtime. Applying dynamic index re-
ordering significantly reduces the runtime of this region. S-
ince the overhead of data reordering is comparatively small
big overall runtime reductions are achieved by applying the

bt.S bt.W bt.A sp.S sp.W sp.A sp.B

N
or

m
al

iz
ed

 r
un

tim
e

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

code region 1
code region 2

index reordering
remaining code

(a) NVIDIA GeForce

bt.S bt.W bt.A sp.S sp.W sp.A sp.B sp.C

N
or

m
al

iz
ed

 r
un

tim
e

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

code region 1
code region 2

index reordering
remaining code

(b) AMD Radeon

Figure 9: Performance impact of dynamic index reordering when applying the transformation to none, the first or the second
of the candidate regions. The runtime is broken up into the runtimes for the two candidate code regions, the runtime of the
transformation (if applicable) and the rest of the program.

bt cg ep ft is lu mg sp mean

S
p
e
e
d
u
p

0
4

8 58x41x

3.1x1.6x

(a) AMD Llano

bt cg ep ft is lu mg sp mean

S
p
e
e
d
u
p

0
4

8 36x19x

2.2x0.7x

(b) Intel Ivy Bridge

Figure 10: Speedup averaged across inputs of the manual
SNU code and our model on systems with integrated GPUs.

transformation to this region: up to 75% on the NVIDIA sys-
tem and 62% on the AMD system.

Similar to predicting which device to run a program on,
we also use decision trees to determine when dynamic index
reordering is beneficial (see section 6 for details). Due to
space constraints we cannot show the decision trees but
applying this model for bt and sp achieves an accuracy of
79% on the NVIDIA and 94% on the AMD system.

8.6 Performance on Integrated Systems

GPU technology is constantly evolving. To check our ap-
proach also works on new devices we evaluated it on two
systems with integrated GPUs, AMD Llano (A8-3850) and
Intel Ivy Bridge (Core i5 3570K). Figure 10 shows a sum-
mary of the results using the SNU implementation and our
predictive modeling approach. The manual SNU code only
achieves speedups of 1.6x and 0.7x on average compared to
3.1x and 2.2x of our approach.

The integrated GPUs on these systems are less powerful
than the discrete GPUs we evaluated before. This demon-
strates even more the need for a model that only maps code
to the GPU when it is beneficial. Integrated GPUs share the
system memory with the CPU, making data movements be-
tween the devices cheaper or even unnecessary in the case of
Intel IvyBridge. Because most benchmark in the NAS par-

allel benchmark suite are compute-intensive this advantage
does not lead to improved performance overall.

9. Related Work
Automatic Generation of GPU Programs No work has
targeted automatic generation of OpenCL code from Open-
MP programs. The OpenMPC compiler [17] is the nearest
work, which translates OpenMP to CUDA programs. Un-
like our approach OpenMPC does not perform dynamic da-
ta transformations nor use predictive modeling to select a
code version across different GPU architectures.In [3] CU-
DA programs are automatically generated from sequential,
affine C programs using the polyhedral model. In all of the
above approaches the code always gets executed on the G-
PU. Dubach et al. present a Java-compatible language called
Lime for heterogeneous systems [8]. The GPU back end of
the Lime compiler generates OpenCL code from the high
level Lime languages. Unlike our approach, they do not con-
sider the problem of selecting the most suitable device from
the host CPU and the GPU to run the code.

Programming Frameworks for GPUs Several program-
ming models [10, 11, 15] have been proposed for GPU pro-
gramming. These approaches provide APIs to develop GPU
applications. All these approaches implicitly assume the G-
PU execution gives the best performance.

Optimizing GPU Programs Most of the prior research
targets on optimizing CUDA programs. CGCM [13] is a
CPU-GPU communication system to optimize CUDA ap-
plications between the host and the GPU. In the following
work [12], DyManD was proposed to overcome the limita-
tion of CGCM by replacing static analysis with a dynamic
runtime system. DyManD is able to optimize programs that
can not automatically handle by CGCM. Dymaxion [5] al-
lows programmers to manually apply index reordering for
CUDA programs. In contrast to Dymaxion which has a s-
ingle data layout for the entire program, our compiler auto-
matically applies dynamic index reordering to parts of the
program when such a transformation is profitable. Further-

more, in Dymaxion index reordering can only be applied
when transferring data from the host to the GPU, while our
technique is applied when the data is already on the GPU.

Predictive Modeling In addition to optimizing sequential
programs [6], recent studies have shown that predictive mod-
eling is effective in optimizing parallel programs [25, 26].
The Qilin [19] compiler uses off-line profiling to create a
regression model that is employed to predict a data parallel
program’s execution time. Unlike Qilin, our approach does
not require any profiling runs during compilation. Recently,
machine learning is used to predict the best mapping of a
single OpenCL kernel [9]. In contrast to this work, our com-
piler automatically transforms large OpenMP programs into
OpenCL-based programs and predicts whether the OpenMP
or OpenCL code gives the best performance on the system.

10. Conclusion
This paper has described a compilation approach that takes
shared memory programs written in OpenMP and output-
s OpenCL code targeted at GPU-based heterogeneous sys-
tems. The proposed approach uses loop and array transfor-
mations to improve the memory behavior of the generated
code. OpenCL is a portable standard and we evaluate its
performance on two different platforms, NVIDIA GeForce
and AMD Radeon. This approach was applied to the whole
NAS parallel benchmark suite where we show that in cer-
tain cases the OpenCL code generated can produce signif-
icant speedups (up to 202x). However GPUs are not best
suited for all programs and in some cases it is more prof-
itable to use the host multi-core instead. We developed an ap-
proach based on machine learning that determines for each
new program whether the multi-core CPU or the GPU is
the best target. If the multi-core is selected we run the ap-
propriate OpenMP code as it currently outperforms OpenCL
on multi-cores. This model is learned on a per platform ba-
sis and we demonstrate that the model adapts to different
platforms and achieves consistent prediction accuracy. Us-
ing our approach we achieve 1.39x and 2.09x improvement
over a hand-coded, GPU-specific implementation. We thus
build on the portability of OpenCL as a language by devel-
oping a system that is performance portable as well.

References
[1] NAS parallel benchmarks 2.3, OpenMP C version. http:

//phase.hpcc.jp/Omni/benchmarks/NPB/index.html.

[2] AMD. AMD/ATI Stream SDK. http://www.amd.com/
stream/.

[3] M. M. Baskaran, J. Ramanujam, and P. Sadayappan. Auto-
matic C-to-CUDA code generation for affine programs. In
CC ’10.

[4] R. Bordawekar, U. Bondhugula, and R. Rao. Believe it or not!:
multi-core CPUs can match GPU performance for a FLOP-
intensive application! In PACT ’10.

[5] S. Che, J. W. Sheaffer, and K. Skadron. Dymaxion: optimizing
memory access patterns for heterogeneous systems. In SC ’11.

[6] K. D. Cooper, P. J. Schielke, and D. Subramanian. Opti-
mizing for reduced code space using genetic algorithms. In
LCTES ’99.

[7] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth,
K. Spafford, V. Tipparaju, and J. S. Vetter. The scalable
heterogeneous computing (SHOC) benchmark suite.
In GPGPU ’10.

[8] C. Dubach, P. Cheng, R. Rabbah, D. Bacon, and S. Fink. Com-
piling a high-level language for GPUs (via language support
for architectures and compilers). In PLDI ’12.

[9] D. Grewe and M. O’Boyle. A static task partitioning approach
for heterogeneous systems using OpenCL. In CC ’11.

[10] T. D. Han and T. S. Abdelrahman. hiCUDA: a high-level
directive-based language for GPU programming.
In GPGPU ’09.

[11] A. Hormati, M. Samadi, M. Woh, T. N. Mudge, and S. A.
Mahlke. Sponge: portable stream programming on graphics
engines. In ASPLOS ’11.

[12] T. B. Jablin, J. A. Jablin, P. Prabhu, F. Liu, and D. I. August.
Dynamically managed data for CPU-GPU architectures. In
CGO ’12.

[13] T. B. Jablin, P. Prabhu, J. A. Jablin, N. P. Johnson, S. R. Beard,
and D. I. August. Automatic CPU-GPU communication man-
agement and optimization. In PLDI ’11.

[14] K. Kennedy and J. R. Allen. Optimizing compilers for modern
architectures: a dependence-based approach. Morgan Kauf-
mann Publishers, 2002.

[15] J. Kim, H. Kim, J. H. Lee, and J. Lee. Achieving a single
compute device image in opencl for multiple GPUs.
In PPoPP ’11.

[16] K. Komatsu, K. Sato, Y. Arai, K. Koyama, H. Takizawa,
and H. Takizawa. Evaluating performance and portability of
OpenCL programs. In Workshop on Automatic Performance
Tuning 2010.

[17] S. Lee, S.-J. Min, and R. Eigenmann. OpenMP to GPGPU:
a compiler framework for automatic translation and optimiza-
tion. In PPoPP ’09.

[18] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D.
Nguyen, N. Satish, M. Smelyanskiy, S. Chennupaty, P. Ham-
marlund, R. Singhal, and P. Dubey. Debunking the 100x G-
PU vs. CPU myth: an evaluation of throughput computing on
CPU and GPU. In ISCA ’10.

[19] C.-k. Luk, S. Hong, and H. Kim. Qilin: Exploiting parallelism
on heterogeneous multiprocessors with adaptive mapping. In
MICRO ’09.

[20] NVIDIA Corp. NVIDIA CUDA. http://developer.
nvidia.com/object/cuda.html.

[21] U. of Illinois at Urbana-Champaign. Parboil benchmark suite,
http://impact.crhc.illinois.edu/parboil.php.

[22] J. R. Quinlan. C4.5: programs for machine learning. 1993.
[23] S. Seo, G. Jo, and J. Lee. Performance characterization of the

NAS parallel benchmarks in OpenCL. In IISWC ’11.
[24] G. Tournavitis, Z. Wang, B. Franke, and M. O’Boyle. Towards

a holistic approach to auto-parallelization. In PLDI ’09.
[25] Z. Wang and M. O’Boyle. Mapping parallelism to multi-

cores: a machine learning based approach. In PPoPP ’09.
[26] Z. Wang and M. O’Boyle. Partitioning streaming parallelis-

m for multi-cores: a machine learning based approach. In
PACT ’10.

