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Abstract—Heterogeneous systems consisting of multiple
CPUs and GPUs are increasingly attractive as platforms for
high performance computing. Such platforms are usually pro-
grammed using OpenCL which provides program portability
by allowing the same program to execute on different types
of device. As such systems become more mainstream, they
will move from application dedicated devices to platforms that
need to support multiple concurrent user applications. Here
there is a need to determine when and where to map different
applications so as to best utilize the available heterogeneous
hardware resources. In this paper, we present an efficient
OpenCL task scheduling scheme which schedules multiple
kernels from multiple programs on CPU/GPU heterogeneous
platforms. It does this by determining at runtime which kernels
are likely to best utilize a device. We show that speedup is a
good scheduling priority function and develop a novel model
that predicts a kernel’s speedup based on its static code struc-
ture. Our scheduler uses this prediction and runtime input data
size to prioritize and schedule tasks. This technique is applied
to a large set of concurrent OpenCL kernels. We evaluated
our approach for system throughput and average turn-around
time against competitive techniques on two different platforms:
a Core i7/Nvidia GTX590 and a Core i7/AMD Tahiti 7970
platforms. For system throughput, we achieve, on average, a
1.21x and 1.25x improvement over the best competitors on
the NVIDIA and AMD platforms respectively. Our approach
reduces the turnaround time, on average, by at least 1.5x and
1.2x on the NVIDIA and AMD platforms respectively, when
compared to alternative approaches.

Keywords-GPU; OpenCL; task scheduling; machine learn-
ing;

I. INTRODUCTION

We now live in the parallel manycore era. Due to power-
density constraints, increased single processor performance
via ever-increasing clock frequency is no longer possible.
This move to parallel system has been mirrored by the
growing use of specialised accelerators such as GPUs. Het-
erogeneous systems consisting of multiple CPUs and GPUs
are increasingly attractive as they provide cost-effective,
energy-efficient high performance computing

OpenCL [1] has emerged as a standard which provides
program portability by allowing the same program to execute
on different types of device. Although it provides portable
functionality, its performance will vary drastically across

different components of the heterogeneous system. Now,
as such systems become more mainstream, they will move
from application dedicated devices to platforms that need to
support multiple concurrent user applications. Performance
variability that may be manageable when the GPU is used
as a dedicated acceleration device by a single application
poses a problem for concurrent users. Here there is a need
to determine when and where to map different applications
to best utilise the available hardware resources.

In this paper, we address the problem of how to schedule
multiple OpenCL applications on a CPU+GPU platform.
Although scheduling is a much studied subject [2], [3],
[4], [5], [6], [7], heterogeneous scheduling is made more
complex by the different execution times an application will
experience on different devices [8], [9], [10]. Furthermore,
while one application may experience significant perfor-
mance improvement when moving from a manycore CPU to
a GPU, another may experience a slow down. Given a set of
application tasks to schedule, it is only possible to determine
the best allocation of tasks to devices and their schedule if
their execution time is known at schedule time. While this
may be possible in certain embedded systems, it is not the
case in general purpose systems when the job mix is not
known ahead of time. Furthermore, the best schedule can
vary depending on optimization criteria; maximizing system
throughput may be at the expense of average turnaround
time.

We develop a novel scheduling approach which deter-
mines at runtime which applications are likely to best utilize
a device. We show that speedup is a good heuristic for
heterogeneous throughput and develop a novel predictor that
determines an application’s speedup based on static code
structure. However, a speedup alone based priority heuristic
would favour small jobs with high speedup over longer
jobs with more modest speedup. Our scheduler therefore
combines speedup prediction and runtime input data size as
factors in considering scheduling priority. This technique is
applied to a large set of concurrent programs and evaluated
for two distinct metrics: system throughput and average
normalized turnaround time. We compare our scheduling
approach against FluidiCL[8], a state-of-the-art kernel split
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(a) OpenCL tasks
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(b) A scheduling scenario

Figure 1. Multi-task scheduling on CPU/GPU heterogeneous systems.

mapping scheme in which both CPU and GPU are fully used.
Our approach shows significant performance improvement,
for both metrics, over all other approaches.

The paper makes the following contributions:
• Develops a speedup classifier for OpenCL kernels
• Presents a speedup based scheduling heuristic for het-

erogeneous platforms
• Demonstrates significant improvement for throughput

and turnaround time against existing scheme
• Provides a detailed limit study for OpenCL scheduling

II. BACKGROUND

This work is concerned with the scheduling of multiple
OpenCL kernel tasks on a CPU/GPU based heterogeneous
platform. A kernel task is referred to as an OpenCL ker-
nel at runtime, which includes computation and associate
CPU-GPU communications. This concept is depicted in
Figure 1(a). Tasks might belong to one or more than one
OpenCL programs. Note that in this paper we do not split
the work of a single kernel across devices.

A typical scenario of OpenCL task scheduling is illus-
trated in Figure 1(b). Here we have a task queue that is man-
aged by a runtime scheduler. In this example, the task queue
contains several OpenCL tasks submitted by four OpenCL
programs, where each task can run on both the CPU and the
GPU. It is therefore the runtime scheduler’s responsibility
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Figure 2. Task scheduling on heterogeneous systems is challenging – the
best scheduling depends on the mix of application tasks and executing on
the GPU may not be the best strategy.

to decide which device to use to run a particular task that
can lead to the best overall performance (e.g. throughtput
or turnaround time). This paper aims to develop a portable
approach for efficient OpenCL multi-task scheduling and
our goal is to maximize the system throughput without
significantly increasing the average application turnaround
time. The next section provides an example showing that
scheduling program task on CPU/GPU based heterogeneous
systems is non-trivial.

III. MOTIVATION EXAMPLE

Consider a scenario of scheduling four OpenCL
tasks (kernels) from four OpenCL programs (bfs,
BlackScholes, Dotproduct, QuasirandomG) on
a CPU/GPU heterogeneous system. Figure 2 shows the
runtime of each individual kernel when it runs on the
GPU or the CPU. As can be seen from this figure, kernel
(bfs) is long running on the GPU and the other two
(BlackScholes and QuasirandomG) enjoy significant
improvement on the GPU. Conversely, the shortest running
kernel on the CPU, Dotproduct, shows no improvement
when scheduled to the GPU.

We now consider how different scheduling policies al-
locate these tasks to a CPU/GPU platform and investigate
their resulting performance. The first one is a greedy first
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come first served policy which allocates tasks to whichever
device is available (FCFS). The second policy is to execute
the tasks only on the many-core CPU in a FIFO manner
(All_on_CPU). The third policy runs all tasks on the GPU
in a FIFO manner (All_on_GPU). Finally we consider the
best possible schedule if we were to know the program
execution time ahead of time (Best). This is impossible
in practice but serves as a useful goal for performance.

Figure 2 (b) shows the resulting throughput performance.
Here we use FCFS as our baseline of 1.00 and show the
other policies’ relative speedup. The All_on_CPU scheme
is obviously a poor scheme as it only utilizes the CPU.
The All_on_GPU policy is more effective, but still not
about to give performance improvement over FCFS. The
Best schedule, however, achieves a speedup of 2x, a
significant improvement over the other schemes. Clearly,
there is significant room for performance improvement for
the policies when compared to the best performance.

This example demonstrates that scheduling policy is criti-
cal to system throughput. A good policy depends on whether
each individual task can benefit from the GPU execution and
how long running the task is. If we know this information be-
fore scheduling the tasks, we can then determine efficiently
which device to use to run each individual task. What we
need is a technique that can predict the GPU speedup of any
given OpenCL kernels and estimate the running time of a
task. The remainder of the paper describes how to predict
OpenCL kernels speedup and use these predicted speedups
together with input sizes as a guide to schedule tasks across
the CPU and GPU.

IV. OVERALL SCHEME

Although knowledge of the execution time of each task is
needed for optimal scheduling, accurately determining the
execution time of a unseen program is undecidable [11],
[12]. Our approach is to use the predicted speedup of an
OpenCL kernel when it is to be executed on the GPU as
part of the guide to its scheduling priority. High speedup
kernel tasks are scheduled to the GPU, lower speedup ones
to the CPU.

Determining the potential speedup of a kernel is non-
trivial, so we consider a simpler classification problem. We
classify programs into two categories high, and low speedups
and use these classification to assign task priority. Accurately
classifying programs in this way relies on the structure of
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Figure 5. The process of training a machine learning predictor with training
examples.

the program and the input data size. Although we have
access to the code before execution, the input data size will
only be known at runtime. As OpenCL is just-in-time (JIT)
compiled, we consider code and input size at the same time.

Figures 3 and 4 illustrate our 2-part approach. The
compiler extracts static code features from the abstract
syntax tree for each OpenCL kernel. These features are then
combined with runtime data information to predict which
speedup category (high or low) this kernel belongs to when
running it on the GPU. The prediction is achieved by way
of a machine learning model applied to the OpenCL kernel
when compiled by the JIT compiler. The prediction, i.e. the
speedup category of the input program for a given input, is
used by the runtime scheduler to determine which device to
use for each individual task.

At the heart of this approach is a speedup category pre-
dictor. In the next section, we will describe how a machine
learning based classifier can be built to predict the speedup
category of any unseen OpenCL programs.

V. PREDICTIVE MODELING

Our predictive model for speedup category prediction is
a support vector machine. The input to the model is a set of
features that describes the input OpenCL kernel. Its output
is classification that indicates whether the input kernel is a
high-speedup or low-speedup kernel.

A. Building the Predictor

Our predictor is built offline using training programs.
The built model can then be used within a OpenCL task
scheduler.

Figure 5 depicts the process of training a machine learn-
ing model using training programs. The training process
involves the collection of training data which is used to fit
the model to the problem at hand. In our case we use a set
of OpenCL programs that are both executed on the CPU
and the GPU to measure the speedup of the GPU execution
for each individual kernel over the CPU. Depending on
the speedup, each kernel will be labelled as either a high-
speedup or a low-speedup category. In this work, an OpenCL
kernel will be labelled as high-speedup if the measured
GPU-speedup is larger than a certain threshold. Otherwise,
it will be labelled as low-speedup. This threshold value was
determined experimentally, which is set to 4 in this work.

We also extract features for each kernel as described in
the following section. The features together with the speedup



Table I
PROGRAM FEATURES

Static features
#instructions #load/stores
#blocks #br/condbranches
#mathFunctions #vector operations
#int operations #float operations
#control instruction #logic operations
#barriers #atomic operations

Runtime features local work size global work size
input size output size

��
��
��

��
��
��
��
��
�

��
��
��
��

�
��
��
��
��
��
��

��
��
���
��
��
��
��

��
��
��
���
��
��
�

��
��
���
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��

��
�
�
�
�

��������������� ����������������

Figure 6. Importance of program features. The larger the box, the more
important a feature is for the prediction accuracy.

category for each program from the training data are used
to build the model. Since training is only performed once
at the factory, it is a one-off cost. In our case the overall
training process takes less than a day on a single machine.

Predictive Model: Our model is a support vector ma-
chines classifier [13]. We use the Radial basis function
kernel, which is able to model both linear and non-linear
classification problems. We chose SVM as it gives better
prediction accuracy when compared to other models (i.e.
K-nearest neighbour and decision trees) in our case.

B. Program Features

Our predictor uses program features to characterize an
OpenCL program. We use both static code features, such as
the number of instructions, and parallel runtime parameters,
such the number of work items. All the static and runtime
features are listed in Table I.

Static code features are extracted from the abstract syntax
tree of the OpenCL kernel at the time the program is
compiled by the OpenCL just-in-time compiler. The feature
extraction tool is based on Clang and LLVM [14]. At
compile time, we extract information about the number and
type of operations.

Besides static code features, we also use parallel
runtime features to characterize the dynamic behavior
which is often associated with the program input. The
local_work_size and global_work_size indicate
the maximum number of current threads, which are use-
ful for determining the amount of parallelism available.
The memory transfer represents the communication over-
head between the multi-core CPU and the GPU, which
can have a significant impact on the GPU speedup. The
input/output size is estimated by calculating the
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Input Size

Predicted Speedup 
Category

High-speedup tasks

Low-speedup tasks

Figure 7. New arriving tasks will be inserted into an appropriate position
of the task queue based on their predicted speedup categories and input
sizes. Tasks from each end of the queue will be dispatched onto the GPU
and CPU respectively.

number of bytes to be transferred between the host CPU
and the GPU.

Our predictor is trained with all static features and dy-
namic features which are shown in Table I. Features which
contribute least to the prediction is filtered out by our
training process. In our experiment, we only select five static
features and four dynamic features. Using fewer carefully
selected training features is able to shrink predictor training
time without suffering a lost in accuracy. In this paper,
our selected features is shown in Figure 6. The overall
contribution of each selected feature in our training process
is also shown in Figure 6.

VI. RUNTIME TASK SCHEDULING

Newly arriving OpenCL kernels are inserted into a task
queue from which kernel tasks are dequeued and scheduled
to either the CPU or GPU when the devices are available
as shown in Figure 7. The queue is sorted based on the
predicted speedup category and program input size. High-
speedup kernel tasks are dequeued from one end and sched-
uled to the GPU, low speedup task are dequeued from the
other end and scheduled to the CPU. Tasks will be firstly
grouped according to their speedup category where tasks
with the same speedup category will be placed together.
Those tasks will then be sorted according to the input size
in a way that those tasks with relatively smaller input sizes
will be placed towards the end of the queue where the
CPU will take tasks from. This is because based on our
observation tasks with a large input size often correlates with
long execution time. We always prefer to schedule tasks that
have long runtime but can enjoy GPU execution with a high-
speedup onto the GPU.

Since tasks are dequeued from both sides of the task
queue, this dequeue process will meet at somewhere in the
middle of the queue. The last task of the queue will be
replicated and mapped to both the CPU and the GPU. The
last task will be first scheduled to an available device and
when the other device becomes idle the scheduler will map
a duplicated copy to this device. The scheduler then waits
for one of the tasks to complete and kills the outstanding
duplicate.
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Figure 8. The layout of the task queue (a) and the scheduling process (b)
(e) for the example shown in Figure 2 using our machine learning based
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Scheduling Example: Figure 8 shows how the
four tasks, bfs, Dotproduct, BlackScholes,
QuasirandomG, presented in Figure 2 are scheduled by
our scheduler. Our predictor takes the feature values for
each OpenCL kernel task and predicts to use the CPU
or GPU for scheduling. For instance BlackScholes is
classified by our predictor as a high-speedup category, it is
scheduled on the GPU. bfs has a set of different feature
values, which is classified by the predictor as low-speedup
task, it is scheduled on the CPU. Both BlackScholes
and QuasirandomG are classified as high-speedup tasks
and the other two are classified as low-speedup tasks. Based
on their speedup categories and input sizes, the tasks are
sorted in the task queue as shown in Figure 8 (a). If we
assume both the GPU and CPU are available upon the time
those tasks arrive, this will result in a scheduling plan as
depicted in Figures 8 (b) - (e) over time. For this example,
our scheduler gives the best throughput performance.

VII. ALTERNATIVE POLICIES

A. Alternative Scheduling Policies

We compare our approach against four different strategies:
• All_on_CPU. Using this scheme, tasks are dispatched

to the shared CPU in the arriving order.
• All_on_GPU. Using this scheme, tasks are dispatched

to the shared GPU in the arriving order.
• FCFS. This is a first come first served approach. Using

this scheme, application tasks will be put into the task
queue in the order as they arrive. Then tasks will be
dispatched to any available computing device (either
the GPU or the CPU).

• Input size guided. In the task queue, tasks are
sorted based on the amount of bytes needed to be trans-
ferred from the CPU to the GPU. With this scheme, the
GPU always gets a task that has the largest input and
the CPU always gets a task with the smallest input.

• Work item guided. In the task queue, tasks are
sorted according to the number of global work items
of the kernel. Using this scheme, the GPU always gets
a task that has the largest number of work items while
the CPU always gets a task with the smallest number
of work items.

Table II
HARDWARE PLATFORM

Intel CPU NVIDIA GPU AMD GPU
Model Core i7 2600K GeForce GTX 590 Radeon HD7970
Core Clock 3.4 GHz 1215 MHz 1000 MHz
Core Count 4 (8 w/ HT) 1024 2048
Memory 8 GB 3 GB 3GB
Memory Bandwidth 21GB 327 GB 288 GB

There are some alternative scheduling schemes, such as
the shortest-job-first scheme [15], which all require to know
the task execution time ahead of time. Since our experimen-
tal settings assume this information is not available to the
scheduler, those approaches cannot provide a fair compar-
ison and hence are not included. Round Robin is another
widely used task scheduling scheme. However, because the
current GPU implementation does not support context switch
or preemption, this is not available for comparison either.

B. Partitioning OpenCL Kernels across Devices

The FluidiCL [8] runtime utilizes both the multi-core
CPU and the many-core GPU to concurrently execute a
single OpenCL kernel. In this way, the CPU executes part
of the kernel, starting from the upper end of the working
space, while the GPU executes the whole kernel, but starting
from the lower end of the working space. When the GPU
reaches a work-group that has already been executed by the
CPU, the whole kernel execution is considered to have been
completed and the results will be merged. However, this
scheme can only apply to one single OpenCL kernel. As
a result, kernels from multiple applications will have to be
executed sequentially. Furthermore, distributing work items
between the CPU and GPU requires synchronization and
communications between the two devices, which can incur
significant runtime overhead. We compare our approach
against FluidiCL in Section IX-B

VIII. EXPERIMENT SETUP

This section describes our experimental setup and the
evaluation methodology used in the remainder of the paper.

A. Platform and Benchmarks

Platform and Software Tools: We evaluate our approach
on two CPU-GPU systems: both use an Intel Core i7 4-core
CPU. One system contains an NVIDIA GeForce GTX 590
GPU, the second an AMD HD 7970 GPU. Both run with the
OpenSUSE 12.3 Linux. Our compiler is GCC 4.7.2 with -O3
as the compiler option. We use the NVIDIA CUDA Toolkit
3.1 which has an OpenCL just in time compiler. Details of
the hardware platforms are shown in Table II.

Benchmarks: We used 35 different benchmarks from
three mainstream OpenCL benchmark suites: the NVIDIA
OpenCL SDK v4.2, the AMD SDK v2.8 and the Parboil
OpenCL benchmark suite v2.5. In the experiments, we ran



Table III
BENCHMARKS AND INPUT SIZES

Suite Benchmarks Input Size Benchmark Input Size

N
V

ID
IA

BlackScholes 12K - 12M ConvolutionSeparable 1.6M - 420M

DXTCompression 17M - 604M DotProduct 41M - 654M

FDTD3d 452M HiddenMarkovModel 69M

Histogram 67M - 268M MatrixMul 63M

Pa
rb

oi
l

BFS 64M Cutcp 3M - 36M

Sgemm 192K - 12M Spmv 49K - 31M

A
M

D

BinarySearch 2K BinomialOption 3K

BitonicSort 16K - 65K BlackScholes 1M - 4M

BlackScholesDP 2M - 5M DCT 16K - 16M

DwtHaar1D 4K - 65K FastWalshTransform 4K - 131K

FloydWarshall 262K Histogram 4M-1G

MatrixMultiplication 16K - 1M MatrixTranspose 16K - 67M

PrefixSum 2K - 16K QuasiRandomSequence 1K

Reduction 8K ScanLargeArrays 4K - 65K

SimpleConvolution 16K

Pl
oy

be
nc

h ATAX 1G BICG 1G

CORR 50M GESUMMV 1G

SYR2K 50M SYRK 33M

each benchmark with a range of different inputs. The list of
benchmarks and inputs is shown in Table III.

B. Runtime Scenarios

Our evaluation setting consists of multiple runtime sce-
narios with 49 different task mixes where each task mix
contains 2 to 50 OpenCL kernels (tasks). The task mixes
are grouped into three task groups with different numbers
of tasks: small, medium, and large. We consider a task group
to be small, medium and large if it contains less than 10, 10-
20, or more than 20 (upto 50) kernels respectively. For each
task mix, we tried up to 125 different task combinations
with different OpenCL kernels and input sizes. We report
the average performance per task group as the geometric
mean across all combinations. The OpenCL applications of
each task group were randomly selected from the list of
benchmarks given in Table III. Moreover, in the experiments
we replayed each scheduling decision 10 times and calcu-
lated the average performance of each decision to reduce the
impact of jitter. Finally, we assumed all tasks arrive at the
same time and have the same priority.

C. Performance Evaluation

Performance Metrics: To evaluate our approach, we used
two metrics, system throughput, a system oriented metric,
and turnaround time, a user oriented metric. Those two
metrics have widely been used to evaluate the performance
of a scheduler in a multi-tasking environment [2], [4]. Our
goal is to maximize the system throughput which in general
leads to favourable turnaround time results. The definitions
of the two metrics are given as below.

System throughput (STP) is a higher is better metric. It
describes the number of tasks completed per unit time. This
is calculated by using the FCFS scheme as a baseline of 1.0,
showing the relative speedup of other scheduling policies. It

is defined as

STP =

�
T i
FCFS

max(
�

Tm
cpu,

�
Tn
gpu)

(1)

where T i
FCFS is the execution time given by FCFS, and

T i
cpu and T i

gpu are the execution time by running task T i on
the CPU and the GPU respectively.

Average normalized turnaround time (ANTT) is a
smaller is better performance metric. It quantifies the time
between a task is created and its completion, indicating the
average user-perceived delay in multi-tasking environment
compared to running a single task on the system. In the
experiments, the turnaround time is normalized to the FCFS
scheme. ANTT is defined as:

ANTT =
1

n

n�

i=1

T i
sch

T i
FCFS

(2)

where T i
FCFS and T i

sch are the time between task T i is
created and its completion using FCFS and an alternative
scheduling policy respectively.

Predictive Modeling Evaluation We use leave-one-out
cross-validation to train and evaluate our predictive mod-
eling based scheduler. This means we remove the target
OpenCL programs to be predicted from the training program
set, collecting training examples without the target programs
to be presented, and then learning a model from the training
examples. It is a standard evaluation methodology, provid-
ing an estimate of the generalization ability of a machine
learning model in predicting unseen programs.

IX. RESULTS

In this section we present the experimental results of our
approach. The baseline is FCFS. Our goal is to maximize
the STP and minimizing the ANTT, so that the system can
finish as many tasks as possible within per time unit and at
the same time reducing the turnaround time.

A. Overall Results

STP: As can be seen from Figures 9 (a) and 10 (a),
our approach consistently outperforms the baseline for this
higher is better metric. As the number of tasks to be
scheduled increases, we see an overall increase in the STP.
The baseline FCFS scheme performs well for a small task
group and all other alternative approaches give slowdown
performance except for our approach where a 1.1x improve-
ment is observed on both platforms. The improvement of
our approach increases to an average STP of 1.4 for a large
task group. This is not an unexpected result as the FCFS
simply allocates a task to the first available device without
considering which the most appropriate computing device
is. This scheme may work well for a small task group as
the number of available scheduling options is small, but
is unlikely to achieve good performance as the number of



tasks to be scheduled increases where a large number of
scheduling options is opened up. By assigning high-speedup
tasks to the GPU and low-speedup ones to the CPU, our
approach can make effective use of both GPU and CPU
and achieves higher throughput. On average, our approach
achieves a throughput of 1.25 across all task group sizes.
This significantly outperforms other approaches which all
fail to improve the STP.

ANTT: Figures 9 (b) and 10 (b) show the achieved
ANTT, a lower is better metric, on the NVIDIA and AMD
platforms respectively. As can be seen from the diagrams,
our approach not only improves throughput and but also the
ANTT. Our approach constantly outperforms the baseline
and has a lower ANTT as the number of tasks to be
scheduled increases. The ANTT given by our approach is
0.58 and 0.8 for a small task group on the NVIDIA and
the AMD platforms respectively, which is further reduced
to less than 0.6 for a large task group. Similar to the STP
results, our ANTT performance is improved as the number
of tasks to be scheduled increases where the number of
available scheduling options increases. Overall, our approach
performs well with an average ANTT of 0.56 and 0.65
on the NVIDIA and the AMD platforms respectively. On
average, our approach outperforms all other approaches by
reducing the turnaround time by at least 1.5x and 1.2x on
the NVIDIA and the AMD platforms respectively.

Summary: Our approach constantly outperforms all al-
ternative approaches for two performance metrics: STP and
ANTT. The advantage of our approach is largely attribute
to its capability to predict the potential speedup category of
each kernel task. Without this information, the alternative
schemes may inappropriately assign tasks onto the GPU,
which may not be able to benefit from the GPU execution.
This leads to the poor GPU utilization and overall poor
scheduling performance.

B. Comparison to State-of-the-Art

Figure 11 (a) compares the STP improvement achieved by
our approach against FluidiCL on the NVIDIA platform. The
performance of FluidiCL is disappointing when scheduling
multiple OpenCL tasks. It gives an average slowdown of
0.93 over FCFS. Only for small task groups, by partitioning
the work of OpenCL kernels across the CPU and the GPU,
FluidiCL is able to achieve a modest speedup (1.03x) over
FCFS.

Using FluidiCL, a faster computing device will eventually
execute a large portion of the work. For all the OpenCL ker-
nels we used in the experiments, there is always one comput-
ing device (either the CPU or the GPU) clearly outperforms
the other. As a result, the use of an additional computing
device rarely accelerates the computation of a single kernel.
Also, we observed that FluidiCL often introduces expensive
synchronization and communication overhead between the
two computing devices for distributing work and merging
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(a) System throughput on the Nvidia Platform
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(b) Normalize average turnaround time on the Nvidia Platform

Figure 9. The achieved STP (a) and ANTT (b) on the Nvidia GPU plat-
form. Our approach achieves, on average, a 21% and 56% of improvement
over the baseline (FCFS) for the STP and ANTT metrics respectively.
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(a) System throughput on the AMD Platform
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(b) Normalize average turnaround time on the AMD Platform

Figure 10. The achieved STP (a) and ANNT (b) on the AMD GPU
platform. Our approach achieves, on average, a 25% and 65% improvement
over baseline (FCFS) for the STP and ANTT metrics respectively.

results, leading to overall slowdown performance. Unlike
FluidiCL, our approach avoids such synchronization and
communication overhead, giving constantly better STP per-
formance over FluidiCL. On average, our scheme improves
the STP by 1.23x compared to FluidiCL. Furthermore, our
approach is able to minimize the average turn around time
by 1.96x over FluidiCL (0.55 vs 1.08 in Figure 11 (b)).
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(a) System throughput of our approach vs FluidiCL
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(b) Normalize average turnaround time of our approach vs FluidiCL
Figure 11. Our approach constantly outperforms FluidiCL with an average
improvement of STP (a) (1.15x vs 0.93) and ANTT (b) (0.55 vs 1.08) on
the NVIDIA platform.
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Figure 12. Comparison to the best available STP. Our approach achieves
43% of the best available performance on the NVIDIA platform.

X. ANALYSIS

A. Limit Study

1) Best Available Performance: Although our scheme
performs well compared to alternative approaches, it is
useful to know whether there is any further room for
improvement. It may be the case that the competitive
schemes are very poor and that a smarter scheme could
perform significantly better. In Figure 12, we compare our
scheme against the best available STP performance on the
NVIDIA platform. This is obtained by exhaustively trying
all possible scheduling options. This best STP scheduling
is unrealistic in practice, but provides a useful upper bound.

When there is a small number of kernel tasks to schedule,
our approach gives nearly optimal performance. When the
number of kernel tasks is large, there is room for im-
provement. The best STP schedule is able to improve
performance by 50% for the STP. This is because speedup
is only a proxy for execution time. Errors in estimating
execution time will increase as the number of tasks increase.
In fact while we can determine the best STP schedule,

it is impossible to determine accurately the best ANTT
schedule due to combinatorial complexity. While we will
never achieve the performance of the best schedule as it
is undecidable, there is still room for improvement. In the
next experiment, we therefore evaluated prediction accuracy
and see if this has an impact on performance.

2) Impact of Prediction Accuracy: We would like to
know how the prediction accuracy affects the scheduling
performance. To do so, we have also considered a decision
tree based model and a theoretically Perfect predictor
which always gives the correct speedup classification (i.e.
the prediction accuracy is 100%).

Figure 13 compares the STP and ANTT performance
achieved by the three models. As can be seen from the
diagram, prediction accuracy has significant impact on the
scheduling performance and in fact the more accurate a
predictor is the better performance the scheduler has. The
SVM model has higher accuracy (87%) than the decision
tree model (72%) for STP (Figure 13 (a)). The SVM model
therefore gives constantly better results for both evaluation
metrics when compared to the decision tree model (1.2x vs
1.13x). A Perfect classifier further increases performance
to 1.25x. We see a similar pattern for ANTT (Figure 13
(b)). Here the SVM model gives an ANTT of 0.57. The
decision tree once again degrades performance to 0.62 while
the Perfect predictor improves it. Although building a
Perfect predictor is almost impossible in reality, this
experiment result confirms that the scheduling performance
can be further improved with a more accurate model.
However, by comparing to the best available performance
of STP1 there is still room for performance improvement
even for the perfect predictor. One reason may be that our
current approach only has two speedup categories which
essentially is a coarse-grained classification. This hypothesis
is confirmed by the experiment described in the next section.

3) Fine-grained Speedup Categorization: Currently, each
kernel task is classified into two speedup categories. We
want to know whether a finer-grained classification could
improve scheduling performance. To do so, we first break
down the number of speedup categories to create 3-7 cat-
egories; we then classify the speedup of each kernel task
using the actually measured speedup. Figure 14 shows the
STP performance using different category granularities. As
can be seen from this figure, a finer-grained classification in
general leads to better STP performance. This shows that
our approach can be further improved using finer-grained
classification and this is our future work.

1Given the extremely large combinatorial scheduling option available, it
is infeasible to find the best ANTT performance. Therefore, we do not
present the best ANTT performance.
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Figure 13. The STP (a) and ANTT (b) achieved by different predictive
models. The more accurate the model is the better the scheduling perfor-
mance is.

0.0

0.2

0.4

0.6

0.8

2 3 4 5 6 7

#Speedup CategoryTh
ro

ug
hp

ut
 re

la
tiv

e 
to

 b
es

t a
va

ila
bl

e
 

Figure 14. STP performance tends to improve with a finer-grained speedup
category classification.

B. Overhead

Our predictive model is trained offline with training
examples. In this work, collecting the training examples took
less than a day using a single machine, which has no impact
on runtime cost. The overhead of using the trained model
includes extracting program features and making predictions.
This overhead is negligible (approximate 10ms in total),
which has been included in all experimental results.

XI. RELATED WORK

Programming Frameworks for GPUs: As GPUs
become increasingly available, there have been corre-
spondingly programming models [16], [17] and compiler
tools [18] proposed for GPU programming. These ap-
proaches provide APIs to develop GPU applications. All
these approaches implicitly assume the GPU execution gives
the best performance and the program is often only tuned
for the GPU.

Program Mapping for GPUs: A number of approaches
have been proposed to partitioning a GPU program kernels

across the CPU and the GPU. The Qilin [10] compiler
first uses profile runs to build a regression model for the
target program and then uses the built model to predict
the optimal loop iteration distribution among the CPUs and
GPUs. Grewe et al [19], [20] present an OpenCL kernel
partition approach which takes GPU contention into account.
Other works takes multiple GPUs into consideration [21],
[22], [23]. All of these approaches, however, only consider
the mapping of a single parallel application or job. None of
them consider how to schedule multiple kernel tasks from
different OpenCL programs.

Dynamic Task Scheduling: There has been a significant
amount of prior work investigating hardware and operating
system based approaches to schedule multiple tasks on
CPUs. For examples, symbiotic job scheduling tries to find
the best mix of jobs [2], [4] on SMT processors; and
Parcae is a dynamic tuning framework [24] to improve
job co-execution on multi-core CPUs. Other work [25],
[26] profiles the program to collect information such as the
number of memory load and store operations and uses this
information as an indicator to schedule multiple tasks across
asymmetric multiprocessors. All those schemes require run-
time profiling or searching to determine a scheduling plan,
which may incur significant runtime overhead.

Scheduling on CPU/GPU Systems: Examples of prior
work on task scheduling on CPU/GPU systems include [27],
[28] and [29], which all require the estimated runtime of
each task. Since providing accurate execution time estima-
tion can be unrealistic in many cases, those approaches can
only applied to a limited classes of applications. Rather
than relying on task runtime which is difficult to obtain in
practice, our novel approach uses machine learning to predict
the speedup category of a given OpenCL kernel based on
static program structures and runtime program input that
are available to the just-in-time OpenCL compiler. Some
other work [30], [31] considers kernel work partitioning
across different processors. These approaches are orthogonal
to our approach. Some of the most recent work [32], [28]
use profiling information to schedule OpenCL tasks. Unlike
our approach, these schemes may incur expensive profiling
overhead at runtime. StarPU [5] supports the scheduling of
a single application on heterogeneous platforms. It relies
on a user-provided cost function for scheduling, but how to
develop a portable cost function remains an open problem.
To support the concurrent execution of multiple StarPU
applications with the minimal interference, Hugo et al [33]
proposed partitioning computing resources into different sets
that are managed by different scheduling algorithms. Unlike
StarPU which requires the user to provide a cost function
for scheduling on each targeting platform, our approach
automatically learns a such mapping heuristic using machine
learning and is portable across platforms.

Predictive Modeling: Machine learning based predictive
modeling has recently been proven to be effective at learning



how to optimize programs on an unloaded machine [34].
Recent studies have shown that predictive modeling is
effective in optimizing parallel programs [35], selecting
micro-architectural parameters [36], and scheduling tasks on
homogeneous multi-cores [7]. However, none of the previous
research in predictive modeling based program optimiza-
tion addresses the problem of multi-task scheduling on a
heterogeneous platform that consists of different computing
devices.

XII. CONCLUSIONS

This paper has presented an efficient OpenCL task
scheduling scheme which schedules multiple programs
across CPUs/GPUs heterogeneous platform. Our scheduler
uses a speedup predictor and runtime input data size to
schedule tasks. This technique is applied to a large set of
concurrent programs where it shows significant performance
improvement over all other existing approaches. This work
shows that speedup is a good priority function. Future
work will investigate improving speedup prediction accuracy
using larger training data sets. Significant further improve-
ment is potentially available when using more fine-grained
speedup classification.
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