
AIACC-Training: Optimizing Distributed Deep Learning Training through
Multi-streamed and Concurrent Gradient Communications

Lixiang Lin†, Shenghao Qiu∗, Ziqi Yu†, Liang You†, Long Xin†, Xiaoyang Sun∗, Jie Xu∗, Zheng Wang∗
†Alibaba Group, ∗University of Leeds

Abstract—There is a growing interest in training deep neural
networks (DNNs) in a GPU cloud environment. This is typically
achieved by running parallel training workers on multiple GPUs
across computing nodes. Under such a setup, the communi-
cation overhead is often responsible for long training time
and poor scalability. This paper presents AIACC-Training, a
unified communication framework designed for the distributed
training of DNNs in a GPU cloud environment. AIACC-Training
permits a training worker to participate in multiple gradient
communication operations simultaneously to improve network
bandwidth utilization and reduce communication latency. It em-
ploys auto-tuning techniques to dynamically determine the right
communication parameters based on the input DNN workloads
and the underlying network infrastructure. AIACC-Training has
been deployed to production at Alibaba GPU Cloud with 3000+
GPUs executing AIACC-Training optimized code at any time.
Experiments performed on representative DNN workloads show
that AIACC-Training outperforms existing solutions, improving
the training throughput and scalability by a large margin.

Index Terms—Distributed deep learning, Model training, Com-
munication optimization

I. INTRODUCTION

Deep neural network (DNN) training is an important appli-
cation workload on GPU clouds. Because a DNN model is
often trained over a large number of samples, distributed deep
learning (DDL) is widely used to reduce the training time by
parallelizing the training workload across multiple GPUs.

Data parallelism1 is a common parallelization strategy for
DDL [1], [2]. This is achieved by partitioning the training
samples across parallel training workers, where each worker
processes a subset of the training data. During each training
iteration, all workers combine the results of their computation
(i.e., the local gradient) to produce an aggregated gradient to
update the model parameters stored on distributed computing
devices before the next training iteration. Aggregation of gra-
dients requires training workers to communicate and exchange
their local gradients via the communication network.

The volume of gradients to be exchanged among training
workers is proportional to the number of model parameters
and the tensor size of individual parameters. Because the size
of new DNN models is increasing at a much faster pace
than the increased hardware performance [1], [3], gradient
communication has become a major performance bottleneck in
DDL [4], [5]. Recently, efforts have been made to optimize
distributed gradient communications by exploiting heteroge-
neous communication links [6] or additional CPU servers [2].
Other works apply gradient compression methods to reduce

1Other DDL approaches include model, pipeline, and asynchronous-data
parallelism. While these are supported by AIACC-Training, they are not as
common as data parallelism and hence are not the focus of this paper.

data transfer size by using a lower precision representation
of gradients [7], [8]. Major deep learning frameworks like
PyTorch and DDL libraries like Horovod [9] also support the
decoupling of gradient communication from computation to
overlap the communication with computation.

While promising, exciting solutions all fail to capitalize on
the large network bandwidth in a modern cloud environment.
As we will show later in the paper, in real-life scenarios,
the state-of-the-art distributed communication framework for
DDL may utilize up to 30% of the available bandwidth of a
standard TCP/IP network in the GPU cloud. The poor network
bandwidth utilization, in turn, leads to increasingly poorer
scalability when more GPUs are used.

After running Alibaba’s public GPU cloud and internal
servers for several years, we have observed many examples
where DDL performance suffers from poor gradient commu-
nication efficiency. While reducing the training time is crucial
for many users, most data scientists and GPU cloud users are
not expert programmers and are unfamiliar with distributed
communication optimization. This motivates us to design
AIACC-Training, a unified distributed communication library
to support efficient gradient communications. AIACC-Training
supports mainstream deep learning frameworks like Tensor-
flow [10], PyTorch [11], and MXNet [12] with Horovod-
like API. It lowers the programming barrier by automatically
converting a sequential DNN code running on a single GPU
to an optimized DDL program with zero user involvement.
As a unified communication library, AIACC-Training provides
a single, highly-optimized framework to meet diverse DNN
workloads while simplifying the library maintenance cost.

A key innovation of AIACC-Training is adopting a multi-
streamed gradient communication strategy to improve network
bandwidth utilization. With prior work, the training worker
only participates in a gradient communication operation at a
time. Because a single communication process cannot fully
utilize the network bandwidth, existing solutions leave much
room for improvement. Our work is based on the observation
that gradients are often produced faster than their exchange
speed, but a single communication stream cannot fully utilize
the network bandwidth offered by modern cloud infrastruc-
tures. By allowing a training worker to participate in multiple
concurrent gradient communication operations, we can better
utilize the network bandwidth to reduce communication la-
tency to improve the training throughput and speed. AIACC-
Training achieves this by carefully packing the computed
gradients to multiple communication units – each is handled
by a concurrently running communication thread.

AIACC-Training develops an auto-tuning technique to find

the optimal number of concurrent communication threads and
the gradient communication granularity, depending on DNN
workload and network topology (that can vary during run-
time). Specifically, AIACC-Training formulates the parameter
selection problem as a multi-armed bandit problem [13]. It
then uses a carefully designed meta solver to automatically
determine the right parameter setting within a search time bud-
get during the initial warm-up phase. Crucially, the results of
parameter search also contribute to the final training outcome,
so no computation cycle is wasted.

AIACC-Training was the first unified communication library
that supports multiple deep learning frameworks in a single
infrastructure. It is compatible with the Horovod API for DDL
and provides a source-to-source tool to translate the sequential
model code for DDL automatically. It supports communication
optimization techniques like gradient compression and can be
used with data, model and pipeline parallelisms or a mixture
of these parallelization strategies. It provides a new parameter
optimizer to improve the training speed.

We evaluate AIACC-Training on representative DNN mod-
els and datasets, including a production DNN system. Experi-
mental results show that AIACC-Training consistently outper-
forms existing approaches, improving the training throughput
by up to 3.3x on public DNNs using 256 GPUs (and 13.4x
on an internal production DNN system). As a major online
service and cloud provider, we have deployed AIACC-Training
on Alibaba’s internal GPU servers and public GPU cloud, with
over 3000 GPUs executing a diverse set of AIACC-Training
optimized workloads at any time on the Alibaba GPU cloud.

This paper makes the following contributions:
• It presents a new gradient communication scheme for ac-

celerating DDL (Section V);
• We demonstrate how auto-tuning techniques can be em-

ployed to optimize hyperparameters for a DDL communi-
cation library (Section VI);

• We present a summary of the critical design decisions, and
quantitative analysis of observations learned from opera-
tional experience in production environments when devel-
oping a DDL communication library.

II. BACKGROUND

A. DNN Model Training
DNN training often consists of millions of iterations across

multiple training epochs. An iteration processes a small part of
the entire training data, known as minibatch. Each training iter-
ation contains three stages: forward, backward and parameter
update. During the forward stage, the training samples (e.g.,
images or sentences) are passed through the DNN layers to
compute a loss (or error) using an objective function (or loss
function). During the backward stage, the loss is backwards
propagated through the DNN layers to compute the gradients.
At the parameter update stage, an optimizer then updates
the model weights based on the gradients. Training a DNN
involved iteratively updating perform these three steps.

During backward propagation, gradients are computed along
the reversed direction of the network, starting from the output

A0 B0 C0

A2 B2 C2 A1 B1 C1

Worker 0

Worker 2 Worker 1

RA B0 C0

A2 B2 RC A1 RB C1

Worker 0

Worker 2 Worker 1

RA RB RC

RA RB RC RA RB RC

Worker 2 Worker 1

Worker 0

(a) reduce‐scatter (b) all‐gather (c) final results

Fig. 1: The ring all-reduce operation.

layer. A network layer can produce more than one gradient,
e.g., a linear layer - y = ax+ b - will produce two gradients:
one for the weight, a, and one for the bias, b, where each gra-
dient is a layer-dependent tensor (a multi-dimensional array).
Our work focuses on optimizing gradient communications at
backward propagation, which is well-known to be the major
performance bottleneck of DDL [1], [2], [4], [5].

B. Data Parallelism
Data parallelism is a mainstream paradigm for DDL [2].

This is achieved by partitioning and distributing the training
samples across different training workers running on different
GPUs, where each GPU holds a complete DNN model (and its
parameters). Since each training worker works on a subset of
the training data, the gradients generated by different training
workers will be different. At the parameter update stage of
a training iteration, gradients from different training works
need to be aggregated to update the model weights before the
next training iteration. This is achieved by either applying an
all-reduce2 operation across parallel processes or using
a parameter server [14] to aggregate the gradients from dif-
ferent processes. This procedure is network IO intensive as it
requires performing data communications and synchronization
across different GPUs and computing servers. Furthermore,
all-reduce is the most popular gradient communication scheme
due to its higher performance over parameter servers.

C. All-reduce
The ring all-reduce [15] is a dominant approach for im-

plementing all-reduce for DDL. Fig. 1 depicts the process
of applying ring all-reduce to three parallel workers. At
the reduce-scatter stage, the ready gradients are partitioned
into n chunks (where n is the number of parallel workers),
creating n rings with different starting and ending points (e.g.,
C0 → C1 → C2 in Fig. 1a). Each data chunk is sent along
a ring. When a worker receives the data from another worker,
it will apply a reduced operator and then proceed to send
the reduced data to the next worker in the ring. The reduce-
scatter phase finishes when each worker holds the complete
reduction of chunk i. In the all-gather step (Fig. 1b), each
worker broadcasts the completely reduced chunk (e.g., RA) to
all other workers. At the end of reduce-gather (Fig. 1c), all
workers will have the complete set of reduced data.

Most distributed training frameworks adopt the ring all-
reduced. However, as we will show in Section VIII, exist-
ing implementations give poor bandwidth utilization, leaving
much room for improvement in a GPU cloud environment.

2All-reduce performs a chosen reduction operator (e.g., sum, min, max) on
data across parallel workers and then sends the global result to all workers.

D. CUDA Streams
Although numerous neural network accelerators have been

developed [16], [17], the NVIDIA GPU remains the de-facto
platform for training DNNs due to its availability and matured
software ecosystem. For this reason, our work primarily targets
NVIDIA GPUs, but our techniques can also be transferred to
other architectures (e.g., the Alibaba NPU).

NVIDIA GPUs consist of a large number of process-
ing units, which are organized as streaming multiprocessors
(SMs). For example, the NVIDIA Tesla V100 GPU supports
80 SMs, where each SM has a fixed number of cores. In
the CUDA programming model, instructions placed within
a single CUDA stream are executed sequentially, following
their issued order. However, code offloaded to different CUDA
streams can be dispatched by the GPU instruction scheduler
to different hardware SMs to be executed concurrently on the
same GPU. As a departure from all distributed communication
libraries, AIACC-Training utilizes multiple CUDA streams
to perform concurrent gradient communications for a GPU
worker during backward propagation. The GPU hardware
scheduler automatically schedules a certain number of CUDA
streams to run on multiple SMs, depending on hardware
resource contention. AIACC-Training uses an auto-tuning
technique (Section VI) to determine the optimal number of
CUDA streams for gradient communications.

E. Distributed Communications in GPU Clouds
TCP/IP network. Like most cloud providers, Alibaba cloud
instances are organized as a virtual private cloud (VPC) to
provide a private communication tunnel for a user. VPC builds
upon the traditional TCP/IP network and tunnel technology
and is commonly available and low cost to both the cloud
provider and end-user. AIACC-Training is designed to op-
timize gradient communications over the TCP/IP network
because it remains the dominant communication infrastructure
in public GPU clouds.
RDMA. GPUs within a single computing host can commu-
nicate via NVIDIA’s Nvlink [18], [19] or PCIe. GPUs across
computing nodes can communicate via either remote direct
memory access (RDMA) or a TCP/IP network. However, GPU
RDMA requires deploying dedicated host bus adaptors and
network adaptors and switches, e.g., InfiniBand and NvSwitch
for NVIDIA GPUs [20]. While RDMA is generally faster
than a TCP/IP network, it incurs significant infrastructure and
operational costs over the TCP/IP solution. As a result, not
all Alibaba GPU cloud servers are equipped with RDMA
components (indeed, most cloud providers do not promise
RDMA). As we will show later, AIACC-Training can also
improve the use of RDMA when it is available.

III. MOTIVATION

The initial design of AIACC-Training was to utilize
Horovod [9], a popular DDL library, for distributed communi-
cations. However, we found that Horovod (and the underpin-
ning NVIDIA Collective Communications Library - NCCL)
gives poor scalability in a typical GPU cloud environment.

8 1 6 2 4 3 2
6 E + 3
8 E + 3
1 E + 4
1 E + 4
1 E + 4
2 E + 4
2 E + 4

i
ma

ge
s /

 se
c.

G P U s

 L i n e a r s c a l a b i l i t y
 H o r o v o d

Fig. 2: The training throughput delivered by Horovod versus
the theoretical linear speedup.

As a motivation example, consider Fig. 2. This diagram
compares the throughput (i.e., the number of training images
processed per second) when applying Horovod to train the
ResNet-50 DNN [9] using multiple GPUs. In this example,
each GPU server has 8x 32GB NVLink-enabled NVIDIA
V100 GPUs, and servers are connected through a 30Gbps
TCP/IP network. We compare the Horovod achieved through-
put against a theoretically perfect linear improvement as we
increase the number of GPUs. While using more GPUs leads
to higher throughput, Horovod gives a scaling efficiency3 of
75% when using 32 GPUs, exhibiting poor scalability. We also
observe a similar scalability issue on the Pytorch and MXNet
distributed training engine, which gives a scaling efficiency of
less than 79% under the same setting. We stress that such a
poor scaling efficiency is not unique to a single DNN. For
example, for VGG-16 and BERT, another two popular DNN
architectures, Horovod gives a scaling efficiency of 40% under
the same setup. The scaling efficiency also further deteriorates
when using more GPUs.

After a close examination, we found that the poor scaling
efficiency is largely due to two fundamental drawbacks. First,
existing distributed training frameworks only utilize a single
communication link for gradient synchronization. Unfortu-
nately, a single communication stream can only utilize at most
30% of the bandwidth provided by the TCP/IP link (and can
be as low as 10% to 5% of RDMA). Such under-utilization
leads to long gradient communication latency, causing frequent
GPU stalls and wasting the expensive computation cycles.
This is a massive missed opportunity. Secondly, existing all-
reduce-based approaches require a single master node (i.e.,
a synchronization point) to ensure all parallel workers have
produced the required gradients. We observe from real-life use
cases that the master node can quickly become a bottleneck
as the number of GPUs increases (e.g., when using more than
128 GPUs), further deteriorating the scalability.

In light of these observations, AIACC-Training aims to
provide a fully decentralized gradient communication scheme
by utilizing multiple communication streams. As we will show
in Section VIII, AIACC-Training gives a scaling efficiency of
over 0.96, leading to 1.3x and 1.8x improvement over Horovod
on ResNet-50 and VGG-16 respectively with 32 GPUs, and
3.3x improvement with 256 GPUs.

3We use the definition in [4] where the scaling efficiency is computed as
TN/NT . Here, TN is the single GPU throughput and NT is the measured
throughput when using N training workers (GPUs).

TensorFlow PyTorch MXNet Caffe
Perseus Python API (Horovod compatible)

Perseus interface (C and C++)
Low‐level communication libraries (MPI and NCCL)

Perseus tensor operator implementation

Perseus context
TensorFlow
context

PyTorch
context

MXNet
context

Caffe
context

Fig. 3: The AIACC-Training software stack.

CUDA
Streams

MPI communication
service

GPU0

Distributed optimizer

CPU

CUDA
Streams

MPI communication
service

GPUk

Distributed optimizer

CPU

TCP

GPU RDMA

Fig. 4: AIACC-Training components. Communication of each
GPU is managed by an MPI process running on the CPU.

IV. OVERVIEW OF AIACC-TRAINING
Fig. 3 gives an overview of the AIACC-Training stack, a

DDL component of Alibaba’s AIACC framework4. It is de-
signed to optimize DDL in a cloud environment with TCP and
RDMA links. It supports multiple deep learning frameworks:
Tensorflow, Pytorch, MXNet and Caffe. AIACC-Training pro-
vides a unified communication API (named Perseus) to all
supported programming models.

The core idea of AIACC-Training is to implement a fully
decentralized and concurrent all-reduce based gradient com-
munication scheme. Communication concurrency is realized
by employing a fine-grained gradient partitioning strategy to
allow a training worker to participate in multiple all-reduce
communications at the same time. This is different from all
prior work, where a GPU can only participate in one gradient
communication at any time. Communication concurrency not
only improves the network bandwidth utilization but also leads
to higher training throughput and faster training time.
Programming interface. Porting model code to AIACC-
Training is straightforward and does not require user involve-
ment. For vanilla sequential DNN code written in Tensorflow,
Pytorch, MXNet and Caffe, AIACC-Training uses a compiler-
based source-to-source translator to automatically convert the
user program to AIACC-Training’s Perseus API for distributed
training, eliminating the need for manual code refactoring. As
the AIACC-Training API is fully compatible with the Horovod
API [9], porting Horvod distributed training programs to
AIACC-Training is also simple. In practice, this means just
changing one line of the code by replacing the import package
from Hrovod to Perseus. This is also automatically handled
by AIACC-Training. Porting MXNet’s parameter server-based
code to AIACC-Training can be realized using the MXNet key
value store interface for parameter synchronization.

4https://www.alibabacloud.com/help/en/doc-detail/198783.html

Gradient
computation

Gradient
computation

Gradient
comp.

Gradient
communication

Gradient
communication

Gradient
comm.

Time

Gradient
computation

Gradient
computation

Gradient
comp.

Gradient
communication

Gradient
communication

Gradient
comm.

AIACC‐Training
Prior w

ork

Performance
improvement

Fig. 5: AIACC-Training exploits asynchronous communication
concurrency to improve training throughput.

Main components. As shown in Fig. 4, AIACC-Training
has two main components, a communication servicing pro-
cess built upon the Message Passing Interface (MPI) and a
parameter optimizer chosen by the user code or the AIACC-
Training runtime. The MPI process runs on the host CPU,
and the optimizer runs together with each training worker on a
GPU. We have one MPI process for each GPU worker. We use
MPI to facilitate inter-node and intra-node communications.
We found that using OpenMP or Pthread for inter-process
communication with the same host offers little benefit for
DDL, but doing so will increase the complexity of code
development and maintenance.
Advantages. Compared to existing distributed communication
libraries, AIACC-Training offers several advantages that were
motivated by real-life use cases. AIACC-Training improves
network bandwidth utilization by allowing a GPU worker
to participate in multiple all-reduce operations at once using
asynchronous, parallel communications. Unlike Horovod that
uses a fixed-sized communication window, AIACC-Training
implements an adaptive scheme to find, during runtime, the
optimal granularity for gradient communication and aggrega-
tion, further enhancing the training throughput.
Other features and optimizations. As a production library,
AIACC-Training also provides fault-tolerance to restart the
training process from the last checkpoint upon node failure
and elastic deployment by propagating training parameters into
newly added computing nodes. It offers debugging support like
identifying NaN (not a number) values from individual gradi-
ents - a headache for many users during DDL. It implements
a new optimizer by combining Adaptive Moment Estimation
(Adam) [21] and Stochastic Gradient Descent (SGD) [22].
It uses linear decay to adjust the learning rate rather than
the commonly used step decay [23] because we found lin-
ear decay works better with the communication optimization
and gradient compression implemented in AIACC-Training.
Building upon the multi-streamed concurrent communication
optimization technique focused in this paper and the new
optimizer, we have demonstrated that it is possible to train
ResNet50 on ImageNet in 158 seconds using 128 NVIDIA
V100 GPUs. The was the state-of-the-art training speed on
the DAWNBench league table [24].

V. GRADIENT COMMUNICATIONS IN AIACC-TRAINING

As depicted in Fig. 5 and Fig. 6, AIACC-Training decouples
gradient computation and communication so that computation

GPU
worker

Gradient queue...

Gradient
Synchronization

Gradient
packing

Gradient all-
reduce

C
P

U

co
m

m
.

se
rv

ic
e

Fig. 6: Overview of the AIACC-Training gradient communi-
cation process. Distributed communications and local gradient
computation run concurrently in an asynchronous manner.

Worker 0

Worker 2 Worker 1

Stream 0
Stream N...

Stream 0
Stream N...

Stream 0
Stream N...

Worker 2 Worker 1

Worker 0

(a) existing approaches (b) AIACC‐Training

Fig. 7: Unlike prior work that only utilizes one communication
link for all-reduce (a), AIACC-Training performs N concur-
rent all-reduce operations on N communication links (over the
same physical link) through N CUDA streams (b).

runs concurrently with distributed data communications. Gra-
dient communication in AIACC-Training consists of multiple
stages that iterate over training steps, described as follows:

Gradient synchronization. As gradients can be produced in
arbitrary order for independent parameters (e.g., parameters 4
and 5 in Fig. 8) during backward propagation, all training
workers need to agree on what gradients to participate in
a single all-reduce operation. This is managed by an MPI
process that communicates with the GPU worker via a CUDA-
MPI aware message queue. Gradient synchronization will be
triggered when the size of the locally computed gradients
meets the communication granularity - AIACC-Training au-
tomatically chooses this parameter during runtime (see Sec-
tion VI). To this end, the MPI communication process uses
a ring all-reduce operation to check if gradient values of a
parameter, like like a linear layer’s weights (see Section II-A),
are ready among all training workers. If a gradient has been
produced (i.e., synchronized) by all workers, a follow-up all-
reduced operation can then be applied to this gradient without
needing to wait until other gradients to be computed across
the DNN layers. This strategy permits the use of multiple
concurrent gradient communications to speedup the training
process as shown in Fig. 5. This is detailed in Section V-A.

Gradient packing. A ring all-reduce operation can be per-
formed on a synchronized gradient after all workers have
computed their locally corresponding values. Because the
tensor size of gradients can vary, and the optimal commu-
nication granularity depends on the communication network,
the AIACC-Training runtime may choose to split the tensor
into multiple units or merge multiple tensors across multiple
synchronized gradients to form a suitable all-reduce unit.

Gradient all-reduce. Once an all-reduce unit is ready, it is
dispatched to a communication kernel executed by a CUDA
stream to perform an all-reduce operation among parallel
workers. As highlighted in Fig. 7, unlike prior work, AIACC-

Parameter 0

Para. 1 Para. 2 Para. 3

Para.4

Para.6

Para.5
...

Para. n

Gradient
Registration

Grad. 0

Grad. (n-1)

Grad. n

Grad. 1
...

Grad. 0

Grad. (n-1)

Grad. n

Grad. 1
...

Tensor Computation
Graph

Gradient
synchronization
vector

0

1

0

1

...

0

1

1

1

1

1

1

1

...

Worker 0 Worker 1 Worker k

0

1

0

1

...

Available
grad.s

(a) Gradient registration (b) Gradient synchronization

Ring all-reduce

0/1
0/1

0/1

0/1

Fig. 8: When loading a model, each training worker registers
the model parameters to participate in communication (a)
through a gradient synchronization vector. The MPI process
then uses a ring all-reduce to agree on the available gradient
values for gradient aggregation among training workers (b).

Training enables a worker to participate in more than one all-
reduced operation over the same network. This strategy utilizes
the hardware parallelism to multiplex the communication re-
sources. To support concurrent all-reduce operations, AIACC-
Training manages a communication thread pool, where each
thread runs within a CUDA stream. The AIACC-Training
runtime automatically dispatches an all-reduce unit to an
available thread, which then takes care of gradient commu-
nication by creating or participating in a new all-reduce ring.
To support multi-streamed communications, AIACC-Training
amends NCCL’s low-level communication primitives, but such
changes are transparent to the user’s code.

A. Gradient Registration and Synchronization
Fig. 8 summarizes the gradient registration and synchro-

nization processes of AIACC-Training.
1) Gradient registration: When loading a DNN model, the

training worker registers the parameters to participate in all-
reduced gradient aggregation. This will generate a n−element
gradient synchronization vector (where n is the number of
gradients generated during backward propagation) stored in the
CPU memory, as shown in Fig. 8a. Each vector element takes a
bit-wise value of 0 or 1, where a value of 1 indicates a gradient
value is computed locally and ready to be reduced. During
gradient registration, parameters are sorted and assigned a
unique index in the gradient synchronization vector. Before
each backward stage, elements of the gradient synchronization
vector are set to zeros.

2) Gradient synchronization: The GPU-based training
worker and the CPU-based MPI communication process talk
through a gradient queue implemented using CUDA-aware
MPI. The CUDA-aware MPI feature provides a virtual single
memory space, where the underlying CUDA runtime auto-
matically manages the data transfer between the GPU and
the CPU memory space. After a local gradient is computed,
a callback function then pushes the gradient tensor (i.e., a
multi-dimensional array) into the gradient message queue.
This callback function is automatically registered by AIACC-
Training through a customizable hook function similar to the
callback mechanism supported by Tensorflow and PyTorch.

A gradient push operation will wake up the CPU-based MPI
process to update the gradient synchronization vector, setting

the corresponding bit to 1 to indicate that a corresponding
local gradient value is ready. Meanwhile, the gradient tensor
will be removed from the gradient queue to be stored in a
gradient communication bucket. If GPU-directed RDMA is
available, the bucket will be allocated in the GPU memory for
GPU-directed RDMA. Otherwise, it will be stored in the CPU
memory. If the gradient bucket size meets the minimum com-
munication granularity, the MPI communication process then
triggers the gradient synchronization process. As illustrated
in Fig. 8b, this is achieved by performing a ring all-reduce
among MPI communication processes - where an MPI daemon
process links to a training worker. To check if a gradient
has been computed by all training workers, we apply a min
reduction operator to each element of the gradient synchro-
nization vector. Since a min operator is used, a gradient in the
all-reduced, synchronization vector will be marked as 0 (not
ready) if it has not been computed by any of the workers. Gra-
dient synchronization is asynchronously performed by another
process managed by the underlying collective primitive library
(i.e., the MPI process is not blocked on a synchronization
operation). Because gradient synchronization and computation
are performed on two computing devices (CPU and GPU), and
the multi-core CPU is mainly idle during the backward stage,
both processes run concurrently, incurring negligible overhead.
It also has a low network overhead because we only perform
all-reduce on a bit vector.

Unlike AIACC-Training, Horovod and other communication
frameworks require having a single master (or root) node to
determine what gradients are ready. However, the master node
can quickly become a communication bottleneck at large-scale
DDL as all workers need to communicate with it. In contrast,
AIACC-Training takes a fully distributed approach for gradient
synchronization, preventing a single node from becoming the
communication bottleneck.

B. Gradient Packing and All-reduce
After gradient synchronization, all training workers agree

on what gradients to participate in the follow-up gradient all-
reduce process. AIACC-Training then determines how to split
or pack tensors of ready gradients to form an optimal all-
reduce unit. This communication parameter is automatically
determined by AIACC-Training during the warm-up phase and
is used by all participating communication threads. Multiple
small tensors will be packed to form a large tensor in an
all-reduce unit, while a large tensor can be breakdown into
multiple all-reduce units. As the size of ready gradients is
often larger than the chosen all-reduce size, there are likely to
be multiple all-reduce units to be communicated. Furthermore,
because ready gradients are packed or sliced according to the
gradient id (given during parameter registration), all workers
also implicitly agree on gradient communication order.

AIACC-Training utilizes and extends the collective commu-
nication primitives (like all-reduce, broadcast, and scatter) of
NCCL and Gloo respectively for GPU- and CPU-based com-
munications. Unfortunately, NCCL only supports one com-
munication link, which can utilize up to 10Gbps bandwidth of

Algorithm 1: Multi-streamed gradient communication
Input: L: list of synchronized gradients;
N: number of threads in P
Data: la: list of available all-reduce units;
lr: list of received all-reduced units;
P: communication thread pool

1 P ← initCUDAStreams(N);
2 while !empty(L) do
3 la← GradientPacking(L);
4 foreach u ∈ la do
5 p← getAvailThread(P);
6 if p == null then

// no more free thread
7 break from while loop;
8 end
9 p− > all reduce(u);

10 end
11 end
12 if all gradients have been communicated then
13 gradients[]← gradient unpack(lr);
14 gradient callback func();
15 end

a TCP/IP network, leading to poor bandwidth utilization in a
GPU cloud environment. AIACC-Training addresses this issue
by issuing multiply communication links over the network by
extending the low-level NCCL implementations.

As described in Algorithm 1, multi-streamed gradient com-
munication is achieved by first creating a thread pool with
multiple CUDA stream contexts (line 1). Each CUDA stream
corresponds to an underlying communication buffer used for
an RDMA or TCP/IP network. The MPI communication pro-
cess automatically dispatches an all-reduce unit to an available
CUDA stream (line 2) which then applies an all-reduce oper-
ation to perform gradient aggregation among training workers
(line 9). AIACC-Training currently supports two all-reduce
algorithms, a ring all-reduce and tree all-reduce. The latter first
performs a ring all-reduce operation among GPUs of the same
computing node and then uses ring all-reduce to communicate
across computing nodes. It is useful when some of the physical
network links become congested due to burst communications
from other shared cloud users. AIACC-Training automatically
determines which all-reduce algorithm to use during the auto-
tuning phase without user intervention.

Within a ring, a CUDA stream of training worker p sends
data to worker id: (p + 1)%p, forming a ring as depicted
in Fig. 1. Unlike traditional ring all-reduce, a worker can
participate in multiple all-reduce rings as shown in Fig. 8b. We
stress that gradient synchronization and communications are
asynchronous operations, and the MPI process is not blocked
on the operation. This allows gradient synchronization and
multi-streamed communication operations to run concurrently
on a multi-core CPU (see also Fig. 5).

Once the all-reduce operation has been performed on every
gradient, AIACC-Training will unpack and regroup the data
back to individual gradient tensors, which are passed to an
optimizer (for parameter update) via a call back function.
Using multiple CUDA streams (and communication buffers)
improves bandwidth utilization by multiplexing the commu-

nication network. By issuing multiple concurrently GPU-
CPU memory transfers (because TCP/IP communications go
through the CPU), multiple CUDA streams can also hide the
GPU-CPU communication overhead.

VI. AUTO-TUNING COMMUNICATION PARAMETERS

Hyperparameters like the all-reduce unit size, the number
of CUDA streams used and the all-reduce algorithm can have
an impact on the communication efficiency. The combination
of possible parameter values results in a large optimization
space, where the optimal setting depends on the cloud in-
stances, the network topology and bandwidth, and the DNN
workload characteristics. AIACC-Training automatically finds
the suitable parameters at runtime using an ensemble of search
techniques. We use an ensemble approach because it allows
us to plug in a new search technique easily. Using a collection
of search algorithms also improves the robustness parameter
search when the network bandwidth, topology, and DNN
workload change. We formulate the parameter search problem
as a multi-armed bandit (MAB) problem [13] and use a meta
solver to find the best parameters under a predefined number
of training iterations during the warm-up phase. Note that
the results of the warm-up phase also contribute to the final
outcome, so no computation cycle is wasted.

Our current search ensemble considers four established
search techniques: grid-search, population based training
(PBT) [25], Bayesian optimization [26], and Hyberband [27],
but other search techniques can be added. Our meta solver is a
MAB with a sliding window, area under the curve (AUC) credit
assignment algorithm. A similar technique was used in prior
work [28]–[30] for compiler optimization. Given a budget of
n training iterations and k search techniques (k = 4 and
n = 100 by default in our current implementation), the meta
solver allocates the training iterations among search techniques
to test their effectiveness. After n iterations, we choose the
best performing parameters to use for the remaining training
iterations. Like [28], our meta solver aims to maximize term:
argmaxt(AUCt +C

√
2lg|H|
Ht

), where t is a search technique
used for the current iteration, |H| is the length of a sliding
history window, Ht is how often the technique has been used
in that history window, C (set to 0.2 by default) is a constant
controlling the exploration/exploitation trade-off, and AUCt

is the credit assignment term quantifying the performance of
the technique in the sliding window. The second term in the
formula is the exploration ratio which becomes smaller the
more often a technique is used. We compute the AUC curve by
looking at the history of a technique. If the technique delivered
a new global best, we draw an upward line on the AUC curve.
Otherwise, we draw a flat line. We then compute the area size
under the AUC curve – the larger the area is, the more efficient
a technique is likely to be.

When used in a GPU cloud, AIACC-Training also stores
the previously-found best parameter setting for a given DNN
computation graph, cloud instance and network topology. It
then uses this setting as a starting point for a similar cloud
instance deployment to boost the search. To quantify the

TABLE I: DNN model characteristics

Model #Param.s #FLOPs Model #Param.s #FLOPs

VGG-16 138.3M 31G ResNet-50 25.6M 4G
ResNet-101 29.4M 8G Transformer 66.5M 145G
BERT-Large 302.2M 232G

similarity of a DDL deployment and a previously seen one,
we measure the similarity of the DNN computation graph and
the network topology. The latter is an undirected graph where
graph nodes are GPU instances and edges are the network
bandwidth. We use the graph edit distance [31] to measure
graph similarities and choose a previously found setting that
is most similar to the input user code and cloud instance.

VII. EVALUATION SETUP
A. Evaluation Platform

We evaluate AIACC-Training on the ecs.gn6e-
c12g1.24xlarge instance of Alibaba GPU cloud. Each
instance is equipped with 4x 24-core vCPUs (2.5GHz Intel
Xeon Platinum 8163 CPU), 736GB of DDR4 RAM, and 8x
NVLink-enabled 32GB NVIDIA V100 GPUs. Unless stated
otherwise, computing nodes are connected via VPC with a
TCP/IP network bandwidth of 30Gbps, but in Section VIII-D,
we evaluate on RDMA connections. Each computing node
runs Linux kernel v3.10.0, and we use CUDA v11.4. All
our experiments run on isolated machines with no other job
running at the same time to ensure reproducibility.

B. DNN Workloads
Our main evaluation considers five representative DNN

architectures. These include three popular convolutional neural
networks (CNNs) for computer vision (CV): VGG-16 [32],
ResNet-50 [33], and ResNet-101 [33], and two state-of-the-art
architectures for natural language process (NLP): Transformer
[34] and BERT-Large [35]. We use the ImageNet dataset for
CV models and the Wikitext-en dataset for NLP models. Ta-
ble I summarizes the model size and computation requirement
- the number of floating-point operations (FLOPs) of these
models. In Section VIII-D, we also report performance on
GPT2-XL (with 1,558M parameters) and a warehouse-scale
click to recommendation (CTR) system that supports billion-
scale transactions in an Alibaba production environment, al-
though we cannot disclose the specific model structure used by
CTR. Unless stated otherwise, we use data parallelism when
using multiple GPUs.

C. Competing Methods
We compare AIACC-Training to the latest version of

two state-of-the-art distributed gradient communication li-
braries: Horovod (v0.23) and BytePS (v0.2) [2]. Like AIACC-
Training, BytePS supports Tensorflow, PyTorch, and MXNex
with a Horovod compatible API. We also compare AIACC-
Training with DDL implementation based on the latest Py-
Torch (V1.10) distributed data-parallel (DDP) API. We re-
fer this scheme to as PyTorch-DDP. Both PyTorch-DDP
and Horovod rely on all-reduce for gradient communication,
while BytePS uses parameter servers. We omit Caffe in our
evaluation because it has been merged to PyTorch. For a

fair comparison, we use the same training hyper-parameters
(optimizer, learning rate and batch size) for all DDL methods.
We turn off the optimizer optimization offered by AIACC-
Training to focus on evaluating gradient communications.

D. Performance Report

Like [2], we observed that training throughput (the number
of training samples processed per unit of time) stabilizes after
the first 100 iterations for all methods. Thus, we report per-
formance after the first 100 iterations for the subsequent 200
iterations. We run each experimental setup 5 times and report
the geometric mean performance for each test case. To provide
a fair comparison, we follow the DNN hypermeter setting used
by BytePS in [2], with a large training batch size. We stress
that smaller batch sizes mean less GPU computation5 but more
communication, where the improvement of AIACC-Training
will be more evident. Since the chosen batch size uses almost
full GPU memory, the improvement over competing methods
is the lower bound of AIACC-Training.

VIII. EXPERIMENTAL RESULTS

A. Overall Performance
Fig. 9 and Fig. 10 show the training throughput on PyTorch-

based CV and NLP models, respectively, when we vary the
number of GPUs (a computing node has 8 GPUs). AIACC-
Training gives consistently good results across evaluation
settings. It starts exhibiting stronger performance when using
more than 8 GPUs with more than one computation node.
This is because gradient communications quickly become the
performance bottleneck for DDL with multiple computing
nodes. BytePS gives poor performance because it requires
additional CPU servers to minimize the bottleneck overhead
of the parameter servers, which is in line with an independent
study [36]. To achieve improved performance for BytePS will
incur an extra financial cost for CPU machine subscription.
Horovod and PyTorch-DDP also deliver better scalability than
BytePS, showing the advantage of all-reduce for DDL in a
typical GPU cloud setup over parameter servers. AIACC-
Training further improves Horovod and PyTorch-DDP by
better utilizing the network bandwidth to reduce the communi-
cation overhead, leading to a higher throughput with multiple
computing nodes. Such performance advantage is more evident
with a large number of GPUs. For example, when using 256
GPUs, AIACC-Training improves Horovod and PyTorch-DDP
by up to 1.68x and 2.68x. We anticipate AIACC-Training to
have greater advantages with more computing nodes.

We also observe that different DNN models manifest differ-
ent scaling efficiency. This is not surprising because the model
scalability depends on the model’s size and communication
patterns. The most scalable model is ResNet-50 with 256
GPUs, where AIACC-Training achieves over 95% scaling
efficiency. This result is in line with prior studies [1], [2],
which show that ResNet-50 has better scalability than other

5Less GPU computation means that there will be a higher chance for the
GPU hardware scheduler to dispatch more CUDA streams to run concurrently
on the hardware for gradient communications.

models. Achieving higher scalability for other larger models is
challenging. This is because large models are typically more
computation-intensive, having more floating-point operations.
Computation-intensive models limit the number of CUDA
streams that can be executed concurrently for gradient com-
munications. Nonetheless, AIACC-Training gives the highest
throughput for all models. As future-generation GPUs are
likely to provide more parallel execution units, we expect
AIACC-Training will deliver better performance on future
high-end GPUs by leveraging the hardware parallelism.

B. Other DL Frameworks
We now apply the unified AIACC-Training library to DNN

models written with Tensorflow and MXNet. AIACC-Training
automatically converts the sequential model code for DDL.
Fig. 11 and Fig. 12 show that AIACC-Training also gives con-
sistently good performance on Tensorflow and MXNet, with
similar improvements seen on PyTorch. Once again, AIACC-
Training demonstrates greater performance as the number of
GPUs (and computing nodes) increases, with a speedup of 3.3x
over Horovod when using 256 GPUs. We can also see that
the parameter server approach used by MXNet gives a lower
throughput compared to the all-reduce used by Tensorflow
and PyTorch. The results suggest that AIACC-Training gives
portable performance across DL frameworks. As a unified
communication framework, AIACC-Training reduces the de-
velopment and maintenance cost, as the same optimization can
be applied to a range of DL frameworks to meet the needs of
different GPU cloud users.

C. Other DNN Workloads and Metrics
We also evaluated AIACC-Training in other evaluation

scenarios. When applying AIACC-Training to the hand-tuned
ResNet-50 of the InsightFace library [37] (with DDL enabled)
on face preconization datasets, AIACC-Training improves the
hand-tuned DDL code by 3.8x when using 128 GPUs. We also
evaluate AIACC-Training on the DAWNBench metrics [24].
The metrics include time and the total cost of public cloud in-
stances to train ResNet-50 to reach a top-5 validation accuracy
of 93% or greater on ImageNet. An earlier version of AIACC-
Training was top in the DAWNBench league board for both
training time and cost. Specifically, AIACC-Training achieved
the training goal within 158 seconds using 128 V100 GPUs
across 16 computing instances with a training cost of $7.43.
AIACC-Training has also been deployed to support a wide
range of internal machine learning systems within Alibaba.
One such example is a click-to-recommend (CTR) system.
On this industry e-commercial workload, AIACC-Training
improves the previously hand-tuned Horovod-DDL implemen-
tation by 13.4x when using 128 V100 GPUs, allowing the
learning system to process 100+ billion entries in 5 hours to
quickly update the model. For this workload, Horovod’s master
node strategy is a bottleneck during gradient synchronization.
By adopting a decentralized synchronization scheme, AIACC-
Training significantly improves the DDL scalability. These
additional use cases confirm the good generalization ability
of AIACC-Training.

2 4 0 3 2 4 2 0 2
1 8 1 6 3 2 6 4 1 2 8 2 5 6

0
1 E 4
2 E 4
3 E 4
4 E 4
5 E 4
6 E 4

#im
ag

es
/se

co
nd B y t e P S

 P y T o r c h D D P
 H o r o v o d
 A I A C C - T r a i n i n g

V G G - 1 6

1 8 1 6 3 2 6 4 1 2 8 2 5 6
G P U s

R e s N e t - 5 0

1 8 1 6 3 2 6 4 1 2 8 2 5 6

R e s N e t - 1 0 1

Fig. 9: Performance on PyTorch based CV models.

1 2 5 0 7 7 . 8
1 8 1 6 3 2 6 4 1 2 8 2 5 6

0
1 E 5
2 E 5
3 E 5

#to
ke

ns
/se

co
nd

G P U s

 B y t e P S
 P y T o r c h D D P
 H o r o v o d
 A I A C C - T r a i n i n g

T r a n s f o r m e r B E R T - L a r g e

G P U s
1 8 1 6 3 2 6 4 1 2 8 2 5 6

0
3 E 3
6 E 3
9 E 3

1 . 2 E 4
1 . 5 E 4

Fig. 10: Performance on PyTorch based NLP models.

D. Further Analysis
Hybrid parallelism. So far, our evaluation has focused on
data parallelism for DDL. Fig. 13 shows the performance for
applying AIACC-Training to ResNet-50 using a hybrid data
and model parallelism. In this experiment, we use the MXNet
implementation of ResNet-50 by replacing the MXNet’s KVS-
tore interface with AIACC-Training. AIACC-Training consis-
tently improves the MXNet DDL implementation, improving
the throughput by 2.8x when using 64 GPUs.
Impact of batch size. Fig. 14 shows the throughput improve-
ment given by AIACC-Training over Horovod as we vary the
training batch size using 16 GPUs (2 computing nodes) on
BERT-large. Here, a batch contains an average of 128 tokens.
Because of the small number of computing nodes used, the
results represent a low-bound performance improvement of
AIACC-Training. AIACC-Training gives better performance
on small batch sizes due to the more frequent gradient com-
munications. We stress that using a large batch size increase
the GPU memory pressure and can slow down the model
convergence [38]. Therefore, it is common to use a modest
batch size for training and fine-tuning, for which AIACC-
Training will manifest better advantages.
Performance on RDMA. Fig. 15 shows the performance
improvement on 8 RDMA-enabled computing nodes (64
GPUs) over PyTorch-DDP. On the large GPT-2 DNN, AIACC-
Training gives a 9.8x speedup over PyTorch-DDP. We also
observe a similar performance trend on other deep learning
frameworks and when using a different number of GPUs,
where AIACC-Training gives around 10% extra improvement
on RDMA on top of the improvement seen on TCP/IP
networks (Section VIII-A). This experiment confirms that
AIACC-Training can effectively utilize the fast RDMA net-
work to deliver scalable performance.
Auto-tuning parameters. As we have discussed in Section
VI, AIACC-Training automatically chooses the gradient com-
munication hyperparameters during runtime. We observe that
the chosen parameters vary across DNN workloads and GPU
instances. In our evaluation, AIACC-Training chooses to use

ring all-reduce instead of tree-based all-reduce, but the number
of concurrent CUDA streams varies between 2 and 24, whereas
AIACC-Training tends to use a larger number of CUDA
streams when a higher number of GPUs is available. This
is expected because computation per GPU decreases with
more GPUs, leaving further room for concurrent gradient
communications. Similarly, the chosen gradient communica-
tion granularity also changes. The chosen communication
granularity is larger for the Transformer-based model over
VGG and ResNet because of the larger number of gradients
generated by Transformer-based DNNs. By employing auto-
tuning techniques, AIACC-Training automatically chooses the
right parameter setting without user intervention.

IX. DISCUSSIONS

Naturally, there is room for improvement and further work.
We discuss a few points here.
Collective communications. AIACC-Training builds upon
low-level collective communication primitives (all-scatter, all-
gather, etc.) for gradient synchronization and communications.
Techniques for improving these communication primitives [1],
[6] are thus orthogonal to AIACC-Training.
Tensor graph optimizaiton. An ongoing work of AIACC-
Training is to exploit compiler optimization to transform the
tensor operators to co-optimize computation with commu-
nications. By splitting or merging tensor operations, it is
possible to better overlap GPU computation with network IO
to improve the training throughput further [39].
Utilizing multi-core CPUs. An interesting future direction is
to better utilize the multi-core CPU for training. For example,
some operations of gradient reduction and parameter updates
can be performed on the CPU. Doing so can reduce the GPU
memory footprint and utilize the multi-core CPU computation
capability. However, care must be taken to make sure the CPU-
GPU data transfer does not become a bottleneck.
Exploiting DNN characteristics. New DNN workloads ex-
hibit new characteristics. For example, inputs to the graph
neural network are sparse matrices [40]. It would be interesting
to understand how to exploit the workload characteristics to
improve the training speed. For example, can we have a new
sparse matrix storage format designed for DDL?

X. RELATED WORK
Efforts have been made to accelerate DDL communication.

These include works on overlapping the computation and
communication through tensor partitioning and computation

6 2 2 . 6 3 9 9 6 6 4 6 . 2
1 8 1 6 3 2 6 4 1 2 8 2 5 6

0
1 E 4
2 E 4
3 E 4
4 E 4
5 E 4
6 E 4

#im
ag

es
/se

c. B y t e P S
 H o r o v o d
 A I A C C - T r a i n i n g

1 8 1 6 3 2 6 4 1 2 8 2 5 6
G P U s

V G G - 1 6 R e s N e t - 5 0 R e s N e t - 1 0 1

1 8 1 6 3 2 6 4 1 2 8 2 5 6
(a) Tensorflow

7 5 0 1 0 0 0 7 0 0

1 8 1 6 3 2 6 4 1 2 8 2 5 6
0

1 E 4
2 E 4
3 E 4
4 E 4

#im
ag

es
/se

c. B y t e P S
 H o r o v o d
 A I A C C - T r a i n i n g

V G G - 1 6 R e s N e t - 5 0 R e s N e t - 1 0 1

1 8 1 6 3 2 6 4 1 2 8 2 5 6
G P U s

1 8 1 6 3 2 6 4 1 2 8 2 5 6
(b) MXNet

Fig. 11: Performance on Tensorflow (a) and MXNet (b) for CV models.

2 1 9 . 1 6 8 k 1 3 . 6 9 8 k
1 8 1 6 3 2 6 4 1 2 8 2 5 60

2 E 7
4 E 7
6 E 7
8 E 7

#to
ke

ns
/se

co
nd

G P U s

 B y t e P S
 H o r o v o d
 A I A C C - T r a i n i n g

T r a n s f o r m e r B E R T - L a r g e

1 8 1 6 3 2 6 4 1 2 8 2 5 60
1 E 6
2 E 6
3 E 6
4 E 6
5 E 6

G P U s

(a) Tensorflow

5 1 5 2 3 2 2
1 8 1 6 3 2 6 4 1 2 8 2 5 60

1 E 5
2 E 5
3 E 5
4 E 5

#to
ke

ns
/se

co
nd

G P U s

 B y t e P S
 H o r o v o d
 A I A C C - T r a i n i n g

T r a n s f o r m e r

1 8 1 6 3 2 6 4 1 2 8 2 5 60
6 E 3

1 . 2 E 4
1 . 8 E 4
2 . 4 E 4

G P U s

B E R T - L a r g e

(b) MXNet
Fig. 12: Performance on Tensorflow (a) and MXNet (b) for NLP models.

1 6 3 2 6 41 . 0
1 . 5
2 . 0
2 . 5
3 . 0
3 . 5
4 . 0

Sp
ee

du
p o

ve
r M

xN
et

DD
L

G P U S

Fig. 13: Throughput improvement over
MXNet (DDL) for ResNet-50 with data
and model parallelisms.

1 1 6 3 2 6 4
1 . 0 0

1 . 2 5

1 . 5 0

Sp
ee

du
p

B a t c h s i z e
Fig. 14: Speedup over Horovod on
BERT-Large with different batch sizes on
16 GPUs (two computing nodes).

V G G - 1 6 B E R T - L a r g e G P T 2 - X L0
2
4
6
8

1 0

Sp
ee

du
p w

.r.t

Py
tor

ch
-D

DP H o r o v o d
 A I A C C - T r a i n i n g

Fig. 15: Throughput improvement over
Pytorch-DDP on 64 GPUs with RDMA
connections.

scheduling [39], [41], [42]. These approaches are comple-
mentary to AIACC-Training. Other techniques apply gradient
compression to reduce the amount of data to be communicated
among training workers [7], [8]. AIACC-Training adopts a
similar idea by using half-precision representation to accel-
erate gradient transmission, but this is not the focus of this
paper.

Our work is closely related to works on optimizing com-
munication frameworks for distributed training [43], [44].
Horovod [9] is a unified communication framework for
DDL, supporting TensorFlow, PyTorch, and MXNet. AIACC-
Training is compatible with the Horovod API, making it easy
to port existing Horvod code to AIACC-Training. However,
Horovod fails to capitalize on the abundant network bandwidth
and GPU parallelism in a distributed cloud environment.
AIACC-Training advances Horovod by developing a fully
decentralized gradient synchronization and communication
scheme by leveraging multiple CUDA streams across mul-
tiple gradient communications, leading to significantly higher
throughput and better scalability. Our work is also related to
prior studies on optimizing all-reduce operations by exploiting

the network topology [5]. AIACC-Training advances these
prior methods by leveraging multiple CUDA streams and auto-
tuning to accelerate gradient communications.

BytePS leverages additional CPU servers to improve
parameter-server-based DDL [2]. Blink optimizes communi-
cations within a single node by carefully utilizing NVLinks
and PCIe [6]. Unlike AIACC-Training, BytePS and Blink do
not leverage multiple communication streams for all-reduce.
Nonetheless, their techniques can be leveraged by AIACC-
Training to better utilize the CPU computing resources.

DeepSpeed [45] supports the training of large-scale DNNs
using data and model parallelism. Unlike AIACC-Training,
DeepSpeed requires heavy user involvement to change the
model training pipeline and implement a standard ring-based
all-reduced operation. In contrast, AIACC-Training requires
no change to the user code and offers a highly optimized all-
reduced algorithm. We are working on extending our code
translator to use DeepSpeed API for DDL automatically.

There is also a growing interest in designing specialized
hardware to accelerate DNN training. Examples of such neural
network accelerators like TPU [16], Habana [46] and Alibaba

Hanguang NPU [17], and programmable network switches
[47], [48]. While AIACC-Training primarily targets NVIDIA
GPUs for GPU clouds, the techniques can be applied to
specialized accelerators. For example, AIACC-Training has
been ported to the Alibaba Hanguang NPU.

XI. CONCLUSION
We have presented AIACC-Training, a unified communi-

cation library for distributed deep learning training. AIACC-
Training provides a single, unified communication interface for
mainstreamed deep learning programming frameworks. It aims
to improve network bandwidth utilization by exploiting GPU
hardware parallelism. It achieves this by decoupling gradient
computation from communications and carefully partitioning
the gradients to be sent through multi-streamed, concurrent
communications. As a departure from prior work, AIACC-
Training implements a fully decentralized approach for gra-
dient communication. It employs auto-tuning to dynamically
determine the suitable communication parameters to adapt to
changes in runtime deployment.

Our experiments on public and production DNN workloads
show that AIACC-Training achieves better scaling efficiency
than existing distributed training frameworks. AIACC-Training
has been deployed and extensively used by Alibaba’s internal
and external users. In the Alibaba public GPU cloud, there
are currently more than 3000 GPUs executing a diverse set
of AIACC-Training optimized models at any time, and we
expect this number to continuously grow as more advanced
optimizations are introduced to AIACC-Training.

ACKNOWLEDGMENT
This work was supported in part by an Alibaba Innovative

Research Programme between the University of Leeds and
Alibaba. For any correspondence, please get in touch with
Zheng Wang (Email: z.wang5@leeds.ac.uk).

REFERENCES

[1] J. Fei et al., “Efficient sparse collective communication and its applica-
tion to accelerate distributed deep learning,” in SIGCOMM, 2021.

[2] Y. Jiang et al., “A unified architecture for accelerating distributed
{DNN} training in heterogeneous gpu/cpu clusters,” in OSDI, 2020.

[3] Y. Huang et al., “Gpipe: Efficient training of giant neural networks
using pipeline parallelism,” Advances in neural information processing
systems, 2019.

[4] Z. Zhang et al., “Is network the bottleneck of distributed training?” in
NetAI, 2020.

[5] M. Cho et al., “Blueconnect: Novel hierarchical all-reduce on multi-tired
network for deep learning,” in MLSys, 2019.

[6] G. Wang et al., “Blink: Fast and generic collectives for distributed ml,”
Proceedings of Machine Learning and Systems, 2020.

[7] Y. Lin et al., “Deep gradient compression: Reducing the communication
bandwidth for distributed training,” in ICLR, 2018.

[8] C.-Y. Chen et al., “Adacomp: Adaptive residual gradient compression
for data-parallel distributed training,” in AAAI, 2018.

[9] A. Sergeev et al., “Horovod: fast and easy distributed deep learning in
tensorflow,” arXiv, 2018.

[10] M. Abadi et al., “Tensorflow: A system for large-scale machine learn-
ing,” in OSDI, 2016.

[11] A. Paszke et al., “Pytorch: An imperative style, high-performance deep
learning library,” NIPS, 2019.

[12] T. Chen et al., “Mxnet: A flexible and efficient machine learning library
for heterogeneous distributed systems,” arXiv, 2015.

[13] A. Fialho et al., “Analyzing bandit-based adaptive operator selection
mechanisms,” Annals of Mathematics and Artificial Intelligence, 2010.

[14] M. Li et al., “Parameter server for distributed machine learning,” in Big
Learning NIPS Workshop, 2013.

[15] A. Gibiansky, 2017. [Online]. Available: https://andrew.gibiansky.com/
blog/machine-learning/baidu-allreduce/

[16] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor
processing unit,” in ISCA, 2017.

[17] Y. Jiao et al., “Hanguang 800 npu–the ultimate ai inference solution for
data centers,” in HCS, 2020.

[18] “Nvlink and nvswitch the building blocks of advanced multi-gpu
communication.” [Online]. Available: https://www.nvidia.com/en-us/
data-center/nvlink/

[19] A. Li et al., “Evaluating modern gpu interconnect: Pcie, nvlink, nv-sli,
nvswitch and gpudirect,” IEEE TPDS, 2019.

[20] T. Shanley, InfiniBand network architecture. Addison-Wesley Profes-
sional, 2003.

[21] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv, 2014.

[22] H. Robbins and S. Monro, “A stochastic approximation method,” The
annals of mathematical statistics.

[23] Y. Lin et al., “Deep gradient compression: Reducing the communication
bandwidth for distributed training,” arXiv, 2017.

[24] C. Coleman et al., “Dawnbench: An end-to-end deep learning bench-
mark and competition,” Training, 2017.

[25] M. Jaderberg et al., “Population based training of neural networks,”
arXiv, 2017.

[26] H. Ha et al., “Bayesian optimization with unknown search space,” NIPS,
2019.

[27] L. Li et al., “Hyperband: A novel bandit-based approach to hyperparam-
eter optimization,” The Journal of Machine Learning Research, 2017.

[28] J. Ansel et al., “Opentuner: An extensible framework for program
autotuning,” in PACT, 2014.

[29] Z. Wang and M. O’Boyle, “Machine learning in compiler optimization,”
Proceedings of the IEEE, 2018.

[30] H. Wang et al., “Automating reinforcement learning architecture design
for code optimization,” in CC, 2022.

[31] X. Gao et al., “A survey of graph edit distance,” Pattern Analysis and
applications, 2010.

[32] K. Simonyan et al., “Very deep convolutional networks for large-scale
image recognition,” arXiv, 2014.

[33] K. He et al., “Deep residual learning for image recognition,” in CVPR,
2016.

[34] A. Vaswani et al., “Attention is all you need,” in NIPS, 2017.
[35] J. Devlin et al., “Bert: Pre-training of deep bidirectional transformers

for language understanding,” arXiv, 2018.
[36] S. Gan et al., “Bagua: Scaling up distributed learning with system

relaxations,” arXiv, 2021.
[37] “Insightface: an open source 2d&3d deep face analysis library.”

[Online]. Available: https://insightface.ai/
[38] “Effect of batch size on training dynam-

ics.” [Online]. Available: https://medium.com/mini-distill/
effect-of-batch-size-on-training-dynamics-21c14f7a716e

[39] A. Jayarajan et al., “Priority-based parameter propagation for distributed
dnn training,” arXiv, 2019.

[40] S. Qiu et al., “Optimizing sparse matrix multiplications for graph neural
networks,” 2021.

[41] S. H. Hashemi et al., “Tictac: Accelerating distributed deep learning
with communication scheduling,” SysML, 2019.

[42] Y. Peng et al., “A generic communication scheduler for distributed dnn
training acceleration,” in SOSP, 2019.

[43] Y. Bao et al., “Preemptive all-reduce scheduling for expediting dis-
tributed dnn training,” in INFOCOM, 2020.

[44] S. Shi et al., “Mg-wfbp: Merging gradients wisely for efficient commu-
nication in distributed deep learning,” TPDS, 2021.

[45] J. Rasley et al., “Deepspeed: System optimizations enable training deep
learning models with over 100 billion parameters,” in KDD, 2020.

[46] “Habana homepage.” [Online]. Available: https://habana.ai/
[47] M. Liu et al., “E3: Energy-efficient microservices on smartnic-

accelerated servers,” in ATC, 2019.
[48] B. Klenk et al., “An in-network architecture for accelerating shared-

memory multiprocessor collectives,” in ISCA, 2020.

