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Abstract
Capability Hardware Enhanced RISC Instructions

(CHERI) is an emerging hardware approach to memory
safety that enforces strong spatial and temporal protections.
This paper presents the most comprehensive performance
evaluation of CHERI to date. Using on-chip performance
monitoring counters (PMCs) on the CHERI-enabled Arm
Morello platform, we analyze 20 C/C++ applications, includ-
ing SPEC CPU2017, a SQL database engine, a JavaScript
engine, and a large language model inference framework,
across three CHERI Application Binary Interfaces (ABIs). We
find that CHERI overheads range from negligible to 1.65×,
with the highest costs in pointer-intensive and memory-
sensitive workloads, largely due to increased memory traffic
and higher L1/L2 cache pressure from 128-bit capabilities.
Importantly, our projections suggest that modest microarchi-
tectural improvements could significantly reduce these costs,
enabling CHERI to deliver memory safety with minimal
performance impact. We hope these findings offer timely
evidence to guide the development of future architectures
that combine strong memory security with high performance.

1. Introduction
Memory safety vulnerabilities, such as buffer overflows

and use-after-free errors, remain a major cause of software
security flaws, especially in systems written in C and C++.
Industry reports estimate that around 70% of critical security
bugs are caused by memory issues [11, 22, 24].

Capability Hardware Enhanced RISC Instructions
(CHERI) [35, 37, 38] address this problem by extending
conventional instruction set architectures with hardware-
enforced capabilities, a hardware-enforced pointer type that
carries metadata about memory bounds and permissions.
Capabilities ensure that a pointer can only access authorized
memory, enabling fine-grained memory protection. The
Arm Morello system [14] is a prototype architecture of
CHERI. It integrates a CHERI extended ARMv8-A processor
with a GPU, peripherals, and memory system on a single
chip. Morello is designed to support industrial evaluation
of CHERI, provide evidence for potential adoption, and
enable further research. The system is supported by the
CheriBSD operating system, a CHERI-enabled version of
FreeBSD [4], which allows software to run under different
CHERI Application Binary Interfaces (ABIs). This provides

a practical platform to explore the trade-offs between memory
safety and performance.

While the benefit of CHERI is compelling, understanding
its performance impact on a modern and complex architecture
like Morello is essential for its broader adoption. An early
report of CHERI performance [36] conducted on SPECInt
2006 provides some high-level performance results. It high-
lighted several sources of capability-associated overhead,
including the increased pointer size (128-bit capabilities
versus 64-bit native pointers), branch prediction effects
from Program Counter Capability (PCC) bounds, and store
buffering behavior. Furthermore, as the CHERI ecosystem,
including operating systems and compilers, has matured over
the past few years, there is a need to revisit the performance
results on CHERI-enabled architecture.

Building on [36], we extend the evaluation to a wider
range of workloads and more recent benchmark suites. Specif-
ically, we conduct a comprehensive empirical evaluation
of CHERI’s performance impact on the Morello platform.
Using the SPEC CPU2017 benchmark suite together with
real-world workloads - including the LLaMA.cpp large lan-
guage model (LLM) inference framework [20], the QuickJS
JavaScript/ECMAScript engine [27], and the SQLite database
system [30] - we evaluate performance under three CHERI
Application Binary Interfaces (ABIs): hybrid, pure-capability
(purecap), and purecap-benchmark. Specifically, the hybrid
mode uses capabilities only where explicitly annotated in C
and C++, allowing conventional and capability-based code
to coexist and enabling incremental adoption. The pure-
capability mode enforces pervasive use of capabilities across
both language-level pointers (e.g., variables referencing heap,
stack, or function addresses) and sub-language pointers (e.g.,
stack pointers and return addresses). The benchmark mode
is a variant of the purecap ABI, designed to work around
limitations in the current Morello branch predictor. It retains
the same memory layout and nearly identical code generation
as purecap code, but relaxes certain protection mechanisms
to isolate architectural overheads from software-level effects.
By comparing these modes, our study provides detailed
insights into the trade-offs between compatibility, security,
and performance in capability-based systems, helping inform
future hardware and compiler design decisions.

To collect performance data, we leverage the on-chip
Performance Monitoring Counters (PMCs). We introduce a
practical methodology for interpreting PMC data to charac-
terise workload behavior on capability-based systems, pro-
viding a template for future performance analysis. Our study



offers a detailed examination of how CHERI capabilities
influence low-level execution dynamics, including cache and
TLB behaviour, frontend pipeline activity (instruction fetch
and branch prediction), and backend execution stalls. Since
Morello is a research prototype, we take care to distinguish
effects inherent to the CHERI model from those arising due
to implementation-specific artefacts, ensuring our findings
are relevant to the design of future memory-safe hardware.

Compared to the most closely related prior work [36], our
study offers several new contributions. First, we increased the
number of SPEC CPU benchmarks from seven to 17, cover-
ing more diverse workloads. Second, we included additional
real-world applications, including a JavaScript/ECMAScript
engine [27], a SQL database benchmark [30] and an LLM
inference workload [20], to ensure the evaluation is more
representative. Third, we provide a more detailed analysis for
each benchmark and introduce new metrics that give clearer
insights into program behavior. Fourth, we find that there are
workloads where CHERI capabilities introduce minor or no
overhead, especially those with moderate memory intensity.
This helps inform more targeted optimization.

This paper makes the following contributions to the
understanding of CHERI performance:

• A comprehensive study of application performance
under different CHERI configurations;

• Identification and quantified results for key contributors
to performance overheads observed in pure-capability
mode, including those inherent to CHERI and those
related to hardware-specific implementation;

• Actionable insights and recommendations for designing
future memory security features at the hardware level.

Online materials: All scripts, code (excluding proprietary
benchmarks like SPEC CPU 2017), and data are publicly
available at https://github.com/xshaun/iiswc25-ae.

2. Background
2.1. The CHERI Memory Protection Model

CHERI extends conventional ISAs with capabilities -
hardware-enforced, unforgeable pointer types with embedded
metadata to provide fine-grained memory protection. For 64-
bit ISAs, capabilities are typically encoded using a 128-bit
compressed format [38]. Each CHERI capability encapsulates
a memory address along with attributes specifying the bounds
of the accessible memory region and the operations permitted
within it. This metadata includes a 64-bit base address and
a representation of a 64-bit limit address (or length) to
define the valid memory range, a set of permission bits
that govern allowable actions (e.g., load, store, execute,
load/store capability), and an out-of-band single-bit validity
tag protected by hardware. The tag ensures the capability has
not been forged or corrupted and can only be manipulated
through CHERI-defined instructions, providing a strong
foundation for memory safety and secure programming.

CHERI capabilities are enforced by the hardware. Every
memory access issued through a capability instruction - or
within a capability-enabled execution mode - is subject to

hardware-enforced checks on the capability’s bounds and
permissions. If an access attempt falls outside the defined
bounds, lacks the required permissions, or uses an invalid (un-
tagged) capability, the hardware raises an exception, typically
a capability violation fault. These mechanisms collectively
enforce fine-grained spatial memory safety by preventing
out-of-bounds accesses. They also support temporal memory
safety by enabling the revocation or invalidation of capabili-
ties, thereby mitigating risks from dangling pointers.

2.2. Morello Platform
We target the Arm Morello platform [14], an experi-

mental SoC developed to support realistic evaluation of the
CHERI architecture [4]. Morello integrates 128-bit CHERI
capabilities into a quad-core, 2.5 GHz ARMv8.2-A Neoverse
N1 CPU with out-of-order superscalar cores. Each core
features a 64KB L1 I-cache and D-cache, both 4-way set-
associative with 64B lines. The per-core L2 cache is 1MB,
8-way set-associative with 64B lines, and there is a 1MB
shared LL cache for all 4 cores.

Morello leverages the existing Neoverse N1 microarchi-
tecture. This choice enabled rapid integration but limited the
scope for CHERI-specific optimization. CPU components
such as out-of-order execution, branch prediction, and cache
design were preserved with minimal changes, resulting
in performance drawbacks [36]. In particular, the branch
predictor does not track changes in the Program Counter
Capability (PCC) bounds, leading to stalls during interlibrary
control transfers. CHERI’s heap temporal safety relies on
data-dependent exceptions for store operations, which the
N1 is not designed to handle efficiently. Store queues and
buffers, sized for 64-bit operations, become bottlenecks when
handling 128-bit capability stores. Finally, the platform lacks
a capability-aware version of the multiply and add (MADD)
instruction.

2.3. CheriBSD
Morello runs a modified FreeBSD OS called CheriBSD,

which manages capabilities at the operating system level. It
ensures that user-space memory allocations (e.g., stack, heap,
globals) are properly bounded by capabilities. CheriBSD also
sets up initial program capabilities, including the PCC for
executable regions and the Default Data Capability (DDC)
for defining the initial data access scope.

2.4. CHERI ABIs on Morello
CheriBSD on Morello supports three main ABIs, each

offering different trade-offs between CHERI protection and
performance:
Hybrid (AArch64): This baseline ABI runs standard 64-
bit ARMv8-A AArch64 instructions, using conventional
integer pointers. Under this hybrid mode, CHERI capabilities
are only used when explicitly introduced through language
extensions or CHERI-aware libraries. This mode serves as a
performance baseline for measuring CHERI overheads.
Pure-capability (purecap): In this mode, all user-space
pointers, including those in C/C++ programs (heap, stack,
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globals, function pointers) and implicit ABI structures
(stack/frame pointers, return addresses, GOT entries), are
represented as 128-bit CHERI capabilities. This enables full
spatial memory safety by enforcing capability checks on all
memory accesses.
Purecap Benchmark (benchmark): This ABI is tailored
for performance analysis. It modifies purecap by using a
single global PCC and performing function calls and returns
using integer jumps instead of capability jumps. This avoids
frequent PCC-bound updates and reduces stalls caused by
Morello’s branch predictor limitations. All other pointers
remain 128-bit capabilities, preserving the memory and
access profile of purecap code. As a result, this mode isolates
the performance cost of PCC handling [36], enabling detailed
analysis of CHERI-specific overheads.

3. Performance Analysis Methodology
To characterize workload performance on the CHERI-

enabled Morello platform, we combine a hierarchical top-
down analysis framework with detailed microarchitectural
event monitoring using on-board PMUs.

3.1. Methodology for Performance Analysis
We use PMUs to capture microarchitectural events and

analyze them using the top-down performance analysis
methodology [2, 42]. This approach, widely applied to
evaluate out-of-order superscalar processors [7, 18, 21, 23],
provides a hierarchical framework to drill down from high-
level pipeline behavior to specific microarchitectural causes.
By applying this methodology, we assess how effectively
the CPU pipeline is utilized, identify bottlenecks, and char-
acterize workload behavior across different CHERI ABIs.

Specifically, at the top level, the methodology classifies
each CPU pipeline slot into one of four categories:
Retiring: micro-operations (µops) are successfully executed
and retired. This reflects the amount of useful work com-
pleted; a high Retiring percentage indicates good pipeline
utilization.
Bad Speculation: Wasted and non-retired work (µops) due
to incorrect speculative execution, typically due to branch
mispredictions and the resulting pipeline flushes.
Frontend Bound: Slots where the backend is ready but the
frontend fails to deliver enough µops (e.g., instruction cache
misses, decode bottlenecks).
Backend Bound: Slots where the frontend delivers µops but
the backend cannot accept them, usually due to execution or
memory bottlenecks (e.g., execution unit contention, memory
latency, full buffers).

If a significant portion of the CPU cycles is attributed
to Frontend or Backend stalls, further analysis is performed
to identify the source of the stalls:
Frontend Analysis: Stalls may arise from instruction fetch
latency (such as L1 instruction cache or instruction TLB
misses) or limited fetch bandwidth, often linked to memory
hierarchy behavior at L2 or L3.

Backend Analysis: Stalls can be categorized as memory
bound (for example, due to data cache or DRAM latency) or
core bound (due to limited availability of execution resources,
captured by events such as INS SPEC, DP SPEC, ASE SPEC,
or BR IMMED SPEC).

This structured methodology helps focus the analysis on
dominant bottlenecks, avoiding overinterpretation of isolated
event counts. It is especially suitable for CHERI evaluation,
where architectural features, such as 128-bit capabilities
and hardware checks, can affect both instruction fetch and
memory access behavior.

3.2. Performance Monitoring and Metrics
We use PMU events available on the Neoverse N1 CPU

core of the Morello platform. These events are collected
using the PMCSTAT utility on CheriBSD. As the platform only
provides up to six configurable PMUs to be used at any
time, benchmarks are executed multiple times (nine runs in
this work) to collect a larger set of events. Event selection
is guided by our top-down evaluation methodology (§3.1)
and tailored to analyze CHERI-specific behavior. Table 1
summarizes the key raw PMU events and the derived metrics
used in this study. As PMUs do not expose per-instruction
counters for CHERI, we infer overheads via increased micro-
op activity by comparing ABIs - for instance, purecap vs.
purecap benchmark highlights branch prediction stalls from
capability branches.

We have specifically considered CHERI-specific events
such as CAP MEM ACCESS RD and MEM ACCESS RD CTAG.
These allow for direct quantification of memory operations
that are capability-based or involve capability tag checks,
providing a unique lens into CHERI’s runtime behavior that
is not possible with standard PMUs alone. For example,
calculating the ratio of CAP MEM ACCESS RD to total load
instructions (LD SPEC) can reveal the capability load density
in different workloads and ABIs, detailed in Table 1.
Generalization. While this study focuses on CHERI, our
methodology and metrics should generalize to other memory-
safety mechanisms. For instance, load/store density and
the safe instruction ratio also apply to RISC-V ePMP [26]
and related schemes. Since CHERI exemplifies hardware fat-
pointer designs, our findings on capability-related overheads
are broadly relevant to future architectures.

3.3. Application Workloads
Our evaluation uses a total of 20 different workload appli-

cations written in C/C++: 17 benchmarks from SPEC CPU
2017 [6], a JavaScript/ECMAScript engine (QuickJS [27]),
an LLM inference engine (LLaMA.cpp [20]), and a SQL
database engine (SQLite3 [30]).
SPEC CPU includes both integer and floating-point bench-
marks and is an industry standard suite to evaluate the
performance of the CPU core and memory subsystem. We
use the train input set in our evaluation due to the runtime
and storage constraints of the Morello platform.
QuickJS is a self-contained interpreter that nearly imple-
ments the full ES-2023 specification. It serves as a proxy for
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TABLE 1: Key PMU Events and Derived Metrics for Morello Characterization.

Metric
Category Raw PMU Event(s) Derived Metric Formula

Cycle
Accounting

CPU CYCLES,
INST RETIRED

IPC (Instructions Per Cy-
cle) INST RETIRED / CPU CYCLES

CPI (Cycles Per Instruc-
tion) CPU CYCLES / INST RETIRED

Top-Level
Stalls

STALL FRONTEND,
STALL BACKEND,
BR MIS PRED RETIRED
(approx. for bad speculation)

Frontend Bound % STALL FRONTEND / CPU CYCLES
Backend Bound % STALL BACKEND / CPU CYCLES
Bad Speculation % (ap-
prox.) 1 - Retiring % - Frontend % - Backend %

Retiring % INST SPEC / SUM(* SPEC)
Branch

Prediction
BR RETIRED,
BR MIS PRED RETIRED Branch Misprediction Rate BR MIS PRED RETIRED / BR RETIRED

L1
Instruction

L1I CACHE REFILL,
INST RETIRED (for MPKI), L1I Miss Rate (MR) L1I CACHE REFILL / L1I CACHE

L1I CACHE L1I Misses Per Kilo Inst
(MPKI)

L1I CACHE REFILL / INST RETIRED *
1000

L1
Data

L1D CACHE REFILL,
INST RETIRED (for MPKI), L1D Miss Rate (MR) L1D CACHE REFILL / L1D CACHE

L1D CACHE L1D MPKI L1D CACHE REFILL / INST RETIRED *
1000

L2
Unified

L2D CACHE REFILL,
INST RETIRED (for MPKI), L2 Miss Rate (MR) L2D CACHE REFILL / L2D CACHE

L2D CACHE L2 MPKI (L2D CACHE REFILL / INST RETIRED) *
1000

Last Level
(LLC)

LL CACHE MISS RD,
INST RETIRED (for MPKI), LLC Read Miss Rate (MR) LL CACHE MISS RD / LL CACHE RD

LL CACHE RD LLC Read MPKI LL CACHE MISS RD / INST RETIRED *
1000

Instruction
TLB

(I-TLB)
ITLB WALK (page table walks), ITLB Page Walk Rate ITLB WALK / L1I TLB
INST RETIRED (for MPKI),
L1I TLB (for walk rate)

ITLB Walks Per Kilo Inst
(WPKI) ITLB WALK / INST RETIRED * 1000

Data TLB
(D-TLB)

DTLB WALK (page table walks), DTLB Page Walk Rate DTLB WALK / L1D TLB
INST RETIRED (for MPKI),
L1D TLB (for walk rate) DTLB WPKI DTLB WALK / INST RETIRED * 1000

CHERI-
Specific
Memory

CAP MEM ACCESS RD,
CAP MEM ACCESS WR,
MEM ACCESS RD CTAG,
MEM ACCESS WR CTAG

Capability Load Density CAP MEM ACCESS RD / LD SPEC
Capability Store Density CAP MEM ACCESS WR / ST SPEC

Capability Traffic Share
(CAP MEM ACCESS RD +
CAP MEM ACCESS WR) /
(MEM ACCESS RD + MEM ACCESS WR)

Capability TAG Overhead
(MEM ACCESS RD CTAG,
MEM ACCESS WR CTAG) /
(MEM ACCESS RD + MEM ACCESS WR)

Memory
Load

LD SPEC, ST SPEC, DP SPEC,
ASE SPEC, VFP SPEC

Instruction-mix-based
Memory Intensity (MI)

(LD SPEC + ST SPEC) / (DP SPEC +
ASE SPEC + VFP SPEC)

Note: These events, such as L1I CACHE REFILL,L1D CACHE REFILL, MEM ACCESS RD, MEM ACCESS WR, etc., are total
access counts for the respective units. The D-side Page Table Walk Rate represents total D-side accesses. * SPEC means
INST SPEC, LD SPEC, ST SPEC, DP SPEC, ASE SPEC, BR RETURN SPEC, BR INDIRECT SPEC, BR IMMED SPEC,
VFP SPEC, CRYPTO SPEC.
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TABLE 2: Benchmark memory intensity values

Benchmark MI Benchmark MI

510.parest r 0.922 519.lbm r 0.438
520.omnetpp r 1.164 523.xalancbmk r 0.860
531.deepsjeng r 0.489 541.leela r 0.565
544.nab r 0.420 557.xz r 0.514
620.omnetpp s 1.165 623.xalancbmk s 0.860
631.deepsjeng s 0.496 641.leela s 0.565
644.nab s 0.424 657.xz s 0.504
LLaMA.cpp
(inference) 0.309 LLaMA.cpp

(matmult) 0.432

SQLite 0.816 QuickJS 0.680

We classify programs according to their memory intensity (MI)
defined in Table 1: values below ∼0.6 indicate compute-intensive
and values between ∼0.6 and 1.0 indicate balanced resource
usage, while values above 1.0 correspond to memory-centric
workloads.

browser-like workloads, where performance-critical behavior
is concentrated in the interpreter loop. This makes it valuable
for understanding program behavior that involves capability-
enhanced instructions after they have been fetched. Perfor-
mance was tested on Test262: ECMAScript Test Suite [33],
that is, for the most recently published ECMA specifications.
LLaMA.cpp is an LLM inference runtime for the execu-
tion and deployment of the standalone model. Its perfor-
mance is primarily constrained by memory bandwidth rather
than raw FLOPs, making it an ideal case for examining
CHERI’s impacts on memory access patterns. inference
uses 7B/ggml-model-q8 0.gguf to process a short prompt
(--n-prompt=512) and generate tokens (--n-gen=128). mat-
mul pseudorandomly generates two FP32 matrices with
dimensions (11008,4096) and (11008,128).
SQLite3 is a widely used embedded SQL engine, known
for its compact and reliable architecture. It is typically
latency-bound on random I/O and sensitive to cache behavior,
offering a compelling use case for evaluating CHERI’s com-
partmentalization capabilities through diverse and frequent
SQL queries, herein, using the speedtest1.c program [31].

We have adapted the benchmarks with minimal CHERI-
specific changes, detailed in Table 6 in the Appendix, to
ensure successful compilation and execution with CHERI
C/C++ [39] on the Morello platform. These changes do not
affect program performance. To support a concrete, non-
conjectural analysis of CHERI’s impact, we classify the
benchmarks based on memory instruction intensity in Table 2.
This classification enables a more precise interpretation of
CHERI’s architectural implications, such as the effect of
128-bit pointers on memory layout and traffic.

3.4. Experimental Setup
All experiments were carried out on the Arm Morello

platform running CheriBSD 25.03. The system is configured
with 2×8 GB of DDR4 memory running at 2,933 MT / s.
The Morello SoC features a quad-core CPU based on the
Neoverse N1 microarchitecture with hyperthreading disabled
to minimize performance variability during measurements.
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Figure 1: The overall execution performance (normalized to
the hybrid mode.)

We cross-compiled programs on a Linux develop-
ment machine using the CHERI LLVM/Clang com-
piler toolchain (morello/llvm-project with commit
671d6dbe2b7 through [10]), with -O3 as the optimization flag.
No CHERI-specific performance tuning or code modifications
were applied, beyond those required to port the programs to
CHERI C/C++, to establish a performance baseline.

As explained in §3.2, each benchmark was executed
multiple times to capture the full set of desired PMU events
(nine runs). We report the arithmetic mean of each metric
across ten times of runs. Since each benchmark was run
in an isolated and unloaded environment, the variance was
consistently below 1%.

4. CHERI Performance Analysis on Morello
This section presents the quantitative results of the

workload characterization study on the Morello platform. Our
evaluation focuses on how CHERI’s architectural features
and different ABIs impact performance at macroscopic and
microarchitectural levels.

4.1. Runtime Overheads and IPC
The introduction of CHERI capabilities, particularly in

the pure-capability (purecap) mode, can lead to noticeable
performance overheads compared to the baseline hybrid
(AArch64) ABI. For SPEC benchmarks (with the train
input), purecap code has an overhead ranging from 0% to
165% compared to hybrid ABI. The 60.3% out of the 103%
slowdown of 523.xalancbmk r could be mitigated by using
the purecap benchmark ABI, which specifically addresses
a branch prediction limitation in the Morello prototype
related to the PCC bounds. The purecap benchmark ABI
can typically reduce the purecap overhead by around 0% to
10%. Figure 1 and Table 3 suggest a high variability of
runtime overhead in purecap mode, depending on the specific
workloads, and in some cases, the CHERI features introduce
zero overhead and even modest performance improvement,
such as 519.lbm r and LLaMA.cpp matmul benchmarks.

The increase in execution time is generally correlated
with a decrease in IPC due to poor instruction-set par-
allelism. For example, the memory-intensive benchmark
520.omnetpp r shows a drop in IPC from 0.578 in hybrid
mode to 0.554 in the purecap benchmark and further to 0.516
in purecap mode, corresponding to its significant increase
in execution time from 81.73s to 142.30s and 153.21s,
respectively. Conversely, compute-intensive benchmarks like
531.deepsjeng r show a more modest IPC reduction (1.702
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Figure 2: The distribution of program section sizes across
benchmarks, normalized to the hybrid mode (numbers indi-
cate median values.)

hybrid to 1.539 purecap) and consequently a smaller runtime
increase (67.42 to 78.85 s).

The Branch Misprediction Rate (MR) is a metric that
can influence overhead, its impact being contingent upon
the specific case under consideration. For example, in
510.parest r, there is a decrease in the branch MR from 0.
9% to 0. 76%, but an overhead of 13.81% persists. However,
in 523.xalancbmk r, the overhead experiences an increase
of 105% concomitant with an increase in branch MR 20%.

4.2. Impact on Binary Size
Figure 2 reports the impact of the three ABI modes on

binary size across various program sections of the binary.
We use the hybrid ABI as the baseline and normalize
the sizes of the purecap and purecap benchmark binaries
accordingly. Overall, CHERI capability metadata introduces
approximately a 5% increase in total binary size, though
the overhead varies significantly across different sections.
Notably, the .data.rel.ro and .note.cheri sections are
absent in the hybrid ABI and are thus shown as absolute sizes.
The .rela.dyn section shows the most significant growth,
approximately 85× larger than the hybrid baseline, reflecting
the considerable storage overhead introduced by CHERI
capability pointers and the associated metadata required for
dynamic linking and relocation. In contrast, sections such as
.text, .data, .bss, .debug, and .others show relatively
modest increases, typically around 10%. This indicates that
CHERI’s binary size overhead is highly section-specific and
mainly driven by pointer-intensive structures and relocation
information. Interestingly, the .rodata section decreases
in size by about 19% in both the purecap and purecap
benchmark modes, partially offset by the growth of the total
binary size. Finally, we observe only a minor difference
between the purecap and purecap benchmark modes in the
.got+.got.plt section.

4.3. Impact of Application Workload Characteristics
The CHERI introduced overhead also varies depending on

the characteristics of the application workload. As anticipated,
memory-sensitive workloads generally experience higher per-
formance overhead in purecap modes than compute-sensitive
ones. However, we found that some computation-sensitive
workloads can also experience significant slowdown.
Memory-intensive Workloads: For 520.omnetpp r (a mem-
ory intensive workload), execution time increases by 74%

in the purecap benchmark configuration and by 87% in
the purecap configuration, relative to hybrid. Similarly,
SQLite shows a 55.33% (purecap benchmark) and 61.16%
(purecap) increase. The impact is even more pronounced for
523.xalanchmk r, where the execution time rises by 45.45%
(purecap benchmark) and 103.5% (purecap). The primary
reason for this degradation is the increased memory footprint
caused by CHERI’s 128 bit capabilities. The larger size
of pointers and pointer-based data structures places greater
demand on the memory hierarchy, including the L1D and
L2D caches and TLBs, and increases memory bandwidth
usage. As a result, workloads that are already constrained
by memory access experience more severe slowdowns.
Compute-intensive Workloads: For execution time, the
compute-intensive 531.deepsjeng r shows an increase of
9.2% in the purecap benchmark and 17% in the purecap.
541.leela r increases by 14% (purecap benchmark) and
23.1% (purecap), which aligns with the expectation of low
overhead for compute-bound tasks. In contrast, QuickJS
exhibits somewhat higher overhead for a compute-intensive
workload, with execution time rising by 165.9% (purecap).
This indicates that even compute-sensitive workloads can
incur noticeable overhead when their memory access patterns
are affected by CHERI’s changes, such as increased L1I,
L2D, and TLB misses observed during execution.
Other Findings: An interesting finding is 519.lbm r (com-
pute), which shows an acceleration in purecap modes (exe-
cution time decreases by 7.73% in the purecap-benchmark
and 7.89% in purecap). The similar phenomenon is also
shown in the LLaMA.cpp matmul benchmark, with around
1.3% speed-up in the purecap benchmark and purecap. Even
for the LLaMA.cpp inference benchmark (i.e., end-to-end text
generation case), only the 1.29% overhead is introduced by
the CHERI feature. This implies that the impact of CHERI is
not universally detrimental and may involve intricate microar-
chitectural interactions or advantageous side effects resulting
from modified data layouts or compiler behavior, which, in
certain instances, can lead to enhancements in performance.
This highlights the need for detailed characterization rather
than relying on broad generalizations.

4.4. Top-Down Bottleneck Analysis
To understand where CPU cycles are being spent or

wasted, we follow the approach described in §3.1, grouping
the CPU pipeline slots into Retiring, Bad Speculation,
Frontend and Backend Bounds. The results are given in
Figure 3 and Table 4.

For memory-intensive 520.omnetpp r, there is a clear
shift: Frontend Bound decreases (5.5% to 3%), while Back-
end Bound increases (67.8% to 70.7%) from hybrid to
purecap. This strongly suggests that the primary performance
bottleneck under purecap is exacerbated in the backend due
to execution unit stalls related to CHERI operations. The
Retiring percentage remains roughly similar, indicating the
core is still doing a comparable amount of ”useful” work
relative to stalls, but the overall execution is slower due to
the increased Backend Bound stalls.
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TABLE 3: Aggregated key performance metrics for representative benchmarks

Hybrid
Benchmark
Purecap
ABIs

510.pa
rest r

519.
lbm r

520.om
netpp r

523.xal
ancbm

k r
531.deep

sjeng r
541.

leela r
544.

nab r
557.xz r

LLaMA
inference

LLaMA
matmul SQLite QuickJS

Execution
Time

37.87
41.94
43.10

38.00
35.06
35.0

81.73
142.30
153.21

53.59
77.95

109.07

67.42
73.64
78.85

97.01
110.59
119.46

99.03
103.39
103.92

46.93
49.65
49.98

477.93
483.79
484.11

126.31
124.57
124.61

18.18
28.24
29.30

22.51
NA

59.87

IPC
1.691
1.634
1.599

.929
1.112
1.108

.578

.554

.516

1.813
1.605
1.188

1.702
1.635
1.539

1.406
1.402
1.295

1.538
1.515
1.516

1.091
1.059
1.037

1.827
2.049
2.055

2.306
2.329
2.324

1.579
1.366
1.299

1.612
NA

1.182
Branch
Prediction
MR (%)

.90

.77

.76

1.52
1.53
1.46

2.80
1.95
2.20

.44

.39

.53

2.99
3.00
2.99

7.36
7.25
7.22

1.16
1.12
1.14

5.56
5.52
5.48

.04

.05

.05

.04

.03

.04

.91
1.04
1.10

1.79
NA

1.68
L1I
Cache
MR (%)

.05

.12

.11

.15

.16

.15

.35

.57

.70

.98
1.32
.98

.03

.13

.13

.01

.09

.05

0
0
0

.07

.09

.09

.02

.02

.02

0
0
0

4.29
4.40
4.54

1.17
NA

1.67
L1D
Cache
MR (%)

2.65
2.72
2.73

19.71
22.75
22.29

4.55
4.65
4.46

.62
1.21
1.04

.43

.49

.47

.55

.61

.61

1.28
1.29
1.31

1.88
1.88
1.88

2.05
1.99
1.97

.96

.97

.96

1.70
2.08
2.11

1.06
NA

1.61
L2D
Cache
MR (%)

5.75
5.64
5.64

12.32
9.50
9.52

27.74
25.42
25.59

.41
2.06
2.42

22.98
19.15
18.46

1.93
3.31
3.39

1.85
1.88
1.83

22.63
22.24
22.08

6.74
7.15
7.14

.32

.34

.35

2.55
3.77
3.77

2.49
NA

5.39
LLC
Read
MR (%)

99.19
99.27
99.38

99.17
99.09
98.96

92.88
96.10
95.95

94.52
96.29
96.00

97.77
97.45
97.72

96.24
96.38
96.45

97.58
99.18
97.95

96.95
96.32
96.53

67.21
67.49
66.93

92.56
92.51
92.13

95.16
93.86
94.20

91.31
NA

96.39
Capability
Load De-
nsity (%)

.10
7.78
7.77

.03
1.63
.06

.07
61.44
60.64

.08
82.58
80.72

.01
28.56
27.88

.25
25.15
24.26

.01
23.23
24.23

.50
12.88
12.32

.05

.29

.18

.04

.12

.10

17.38
49.81
49.74

2.69
NA

56.98
Capability
Store De-
nsity (%)

1.20
25.12
25.10

.02
1.45
.06

.10
78.89
78.12

.10
114.48
111.66

.02
41.11
40.88

.93
65.63
64.57

.04
14.35
14.85

.81
17.16
16.21

.99
3.55
2.24

1.96
2.84
2.22

23.27
63.58
63.68

4.82
NA

91.43
Capability
Traffic
Share (%)

.16
8.74
8.73

.03
1.57
.06

.09
64.57
64.64

.08
73.72
72.48

.01
31.02
30.66

.49
35.17
34.51

.02
22.86
23.76

.67
15.44
14.70

.08

.40

.26

.06

.14

.12

18.59
48.73
49.01

3.48
NA

59.76
Capability
Tag Over-
head (%)

.05
9.87
9.84

.02
1.37
.05

.06
66.75
66.82

.07
73.55
72.22

.01
24.12
23.38

.05
25.81
25.02

.01
29.95
30.84

.54
15.58
15.01

.04

.34

.21

.04

.17

.14

15.03
43.90
44.07

2.26
NA

53.43

TABLE 4: Top-down analysis breakdown for six selected workloads

Hybrid, Benchmark,
Purecap ABIs 519.lbm r 520.omnetpp r 541.leela r LLaMA.cpp inference SQLite QuickJS

Execution Time 38.00,35.06,35.09 81.73,142.30,153.21 97.01,110.59,119.46 477.93,483.79,484.11 18.18,28.24,29.30 22.51, NA, 59.87
Speedup 1, 1.0838, 1.082 1, 0.574, 0.533 1, 0.877, 0.812 1, 0.987, 0.987 1, 0.643, 0.620 1, NA, 0.375
IPC 0.929, 1.113, 1.109 0.578, 0.578, 0.516 1.406, 1.402, 1.295 1.827, 2.049, 2.055 1.579, 1.366, 1.299 1.612, NA, 1.182
Retiring 0.546, 0.552, 0.537 0.556, 0.553, 0.556 0.531, 0.527, 0.529 0.503, 0.504, 0.503 0.525, 0.524, 0.527 0.535, NA, 0.536
Bad Spec 0, 0, 0 0.0, 0.0, 0.0 0.142, 0.138, 0.118 0.0, 0.042, 0.044 0.074, 0.028, 0.01 0.088, NA, 0.0
Frontend Bound 0.024, 0.034, 0.033 0.055, 0.034, 0.03 0.088, 0.064, 0.071 0.006, 0.005, 0.006 0.153, 0.12, 0.119 0.094, NA, 0.071
Backend Bound 0.684, 0.615, 0.617 0.678, 0.705, 0.707 0.239, 0.271, 0.282 0.499, 0.449, 0.446 0.249, 0.328, 0.344 0.283, NA, 0.399
—–+ Memory Bound 0.562, 0.308, 0.308 0.368, 0.338, 0.347 0.088, 0.092, 0.098 0.331, 0.212, 0.212 0.112, 0.145, 0.154 0.115, NA, 0.157
— — – L1 Bound 0.029, 0.015, 0.015 0.015, 0.014, 0.014 0.015, 0.011, 0.012 0.005, 0.003, 0.003 0.008, 0.011, 0.011 0.011, NA, 0.01
— — – L2 Bound 0.024, 0.01, 0.01 0.027, 0.024, 0.025 0.002, 0.002, 0.003 0.01, 0.007, 0.007 0.004, 0.006, 0.006 0.006, NA, 0.008
— — – ExtMem Bound 0.51, 0.283, 0.283 0.326, 0.3, 0.308 0.072, 0.078, 0.083 0.317, 0.203, 0.202 0.1, 0.128, 0.136 0.097, NA, 0.138
—–+ Core Bound 0.121, 0.306, 0.308 0.31, 0.367, 0.36 0.151, 0.179, 0.184 0.168, 0.236, 0.235 0.137, 0.183, 0.19 0.168, NA, 0.242
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Figure 3: Top-level breakdown analysis
Note: Instructions are classified into four distinct categories:
Retiring(%), Bad Speculation(%), Frontend(%), and Back-
end(%), which collectively sum to one.

For compute-intensive 541.leela r, the changes are
more subtle. Frontend Bound decreases from 8.8% to 7.1%,
while Backend Bound sees a small increase (4.3%). The
Retiring percentage sees a slight dip. This indicates a less
dramatic shift in bottlenecks compared to memory-intensive
workloads. This conforms to the majority of workloads.

In examining the workloads, transitioning from Memory
Bound to Core Bound, as illustrated in references 519.lbm r
and LLaMA.cpp, can result in either enhanced performance or
no noticeable change. This drives the compiler optimization
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for programs executed on the CHERI platform to minimize
instructions associated with memory-bound.

QuickJS sequentially executed 18,612 JavaScript pro-
grams, resulting in a high ExtMemory Bound and a signifi-
cant performance drop, with execution time increasing from
22.51s to 59.87s. During this period, its memory footprint
grew by 36.3%, while utilized memory increased by 55.24%
from hybrid to purecap mode.

4.5. Frontend Dynamics and Branch Prediction
The frontend of the processor is responsible for fetching

and decoding instructions. CHERI features can impact this
through changes in code size or by interacting with branch
prediction mechanisms, especially concerning the PCC.
Frontend Stall Rates: the Frontend Stall Rate often de-
creases in purecap mode for memory-intensive benchmarks
(e.g., from 5.4% to 2.9% in 520.omnetpp r) or remains stable
for compute-intensive ones (e.g., 4% in 557.xz r). This
suggests that for many workloads in Morello, the primary
bottleneck introduced by CHERI is not in the Frontend.
Branch Misprediction Rates: The Branch Misprediction
Rate in Table 3 generally shows little change across ABIs
for most benchmarks (e.g., 531.deepsjeng r, 541.leela r,
557.xz r, LLaMA.cpp). This implies that the branches them-
selves are not inherently harder to predict or a core bottleneck
in the CHERI-oriented optimization for these workloads.
Morello’s PCC Branch Prediction Limitation: A key
factor in Morello’s performance is its branch predictor’s
lack of full awareness of PCC bounds changes. This can
cause stalls when PCC bounds are modified, such as during
interlibrary function calls/returns or virtual method calls.
The purecap-benchmark ABI was designed to mitigate this
specific issue by using global PCC bounds and integer
jumps. The significant performance improvement observed
when moving from purecap to purecap-benchmark ABI (e.g.,
overhead dropping from 28.01% to 14.97% in [36]; also
been validated in 520.omnetpp r, 523.xalanchmk r, and
541.leela r.) strongly indicates that a substantial portion
of the overhead in the standard purecap ABI is due to these
PCC-related stalls.

For example, in 520.omnetpp r, the Frontend Stall Rate
is 3.4% for the purecap-benchmark versus 2.9% for purecap,
which is a slight decrease, indicating that alternative factors
may be contributing. However, 520.omnetpp r is overall
faster to run in the purecap benchmark than in purecap
(142.3s vs 153.2s). This difference highlights the benefit
of the purecap benchmark ABI in reducing overheads, part
of which is likely due to improved frontend behavior. This
analytical separation is crucial: This allows us to estimate
that a CHERI implementation with a capability-aware branch
predictor would or would not experience overhead for the
specific workload.

4.6. Backend Stalls and Execution Characteristics
Backend stalls occur when the execution units or memory

subsystem fail to keep up with the Frontend. As shown
in Figure 4, the increased Backend stalls in purecap modes
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Figure 4: Percentage of counters pertaining to core and
memory bounds
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Figure 6: Memory-bound analysis (from cache and DRAM)

are primarily driven by memory hierarchy effects, detailed
in §4.7 - notably higher L1I, L1D, L2D, and TLB miss rates.

Our analysis of the dynamic instruction mix (see Figure 5)
reveals a notable shift under purecap. In particular, the pro-
portion of data processing instructions (DP SPEC) increases
substantially, ranging from 5.21% to 29.31%, due to the extra
arithmetic operations required for capability manipulation
and bounds checking. In contrast, the proportions of load
(LD SPEC) and store (ST SPEC) instructions remain relatively
stable, with standard deviations of 2.01% and 1.47%, respec-
tively. This suggests that memory access patterns are less
affected than computational demands. The shift in instruction
mix underscores the microarchitectural cost of CHERI’s
security model and identifies potential areas for optimisation.

4.7. Memory Hierarchy under CHERI
The CHERI architecture’s 128-bit capabilities fundamen-

tally alter the memory footprint of applications, especially
those that are pointer-intensive or manage large pointer-based
data structures. This has direct consequences for cache and
TLB performance, shown in Figure 6.
Cache Performance: The doubling of pointer size from
64 bit to 128 bit increases the memory footprint of data
structures that include pointers, such as arrays or pointer-rich
objects on the stack or heap. This expansion reduces spatial
locality for a fixed cache size, as fewer logical elements
fit within a cache line or cache level, leading to higher

8



cache miss rates. L1 instruction cache behaviour can be
affected by CHERI-induced changes in code generation,
including additional instructions for capability handling and
modified code layout. For example, in 520.omnetpp r and
QuickJS, the L1I miss rate increases from 0.35% to 0.7% and
from 1.17% to 1.67%, respectively. However, benchmarks
such as 523.xalancbmk r and SQLite show negligible change,
suggesting limited impact on instruction fetch performance.
L1 data cache miss rates show no consistent correlation with
overall performance. For instance, 519.lbm r sees increased
L1D misses yet improved performance, while 520.omnetpp r
experiences a performance drop despite stable L1D miss rates
when moving from hybrid to pure capability mode. The L2
unified cache often absorbs the pressure from increased L1
misses. In 541.leela r and QuickJS, L2 data miss rates
rise by 75.6% and 116.4%, respectively, accompanied by
performance reductions of 23.14% and 165.97%. Conversely,
519.lbm r and 531.deepsjeng r show lower L2 miss rates
under purecap, possibly due to changes in memory access
behaviour or improved cache replacement effects. Last level
cache (LLC) miss rates remain extremely high in almost
all cases, typically above 90% in both hybrid and purecap
modes—for example, LLaMA.cpp matmul records 92.56% (hy-
brid) and 92.13% (purecap), while SQLite shows 95.16% and
94.2%. These results indicate that memory-bound analysis
may be more useful for identifying performance bottlenecks
than LLC miss rates alone.
TLB Performance: The increased memory footprint intro-
duced by capabilities can place additional pressure on the
TLB. When applications access more distinct memory pages
due to data expansion or changes in allocation strategies (for
example, to satisfy capability alignment), TLB miss rates and
page table walks tend to rise. The DTLB WALK event counts
data accesses that trigger a page table walk after a miss
in the Data TLB (DTLB). Most benchmarks show stable
values across the three ABIs. However, 523.xalancbmk r,
523.leela r, and 544.nab r show increases of 1170%,
324%, and 62%, respectively. In contrast, some cases show re-
ductions of 103.52%, 23.4%, and 4.93%. The L1D TLB miss
rate shows no consistent pattern with overall performance
across the three ABIs. It only shows a notable decrease in
520.omnetpp r and an increase in 523.xalancbmk r, both
linked to performance degradation. The L2D TLB miss
rate remains mostly unchanged across the ABIs. However,
the total counts of TLB and TLB REFILL events increase -
and in some cases double - when moving from hybrid to
purecap, even though the miss rate stays the same. These
TLB and cache effects reflect CHERI’s expanded memory
footprint and contribute to the increased Backend Bound stall
percentages discussed in §3.1.

4.8. CHERI-Specific Events
We leverage the CHERI-specific PMU events supported

by Morello ( §3.2) to examine the CHERI mechanisms during
runtime.
Quantifying Capability-Based Memory Traffic: By com-
paring CAP MEM ACCESS RD with LD SPEC, we can calculate
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Figure 7: Performance correlation matrix (hybrid vs purecap)

the proportion of read-memory traffic that is explicitly
capability-based. Similarly for writes. This ratio provides
a direct measure of the capability load density for a given
workload and ABI. For instance, this ratio in purecap mode
is expected to be higher than that in hybrid mode. A higher
proportion of capability accesses increases sensitivity to
the overheads of wider pointers and capability checks. For
example, in QuickJS and 523.xalancbmk r, the capability-
based load rises from 2.69% (hybrid) to 56.98% (purecap)
and 0.08% (hybrid) to 80.72% (purecap), leading to notable
performance declines - 165.97% and 103.52%.
CHERI-specific Events and Bottlenecks: The observed
increase in CAP MEM ACCESS RD aligns with the rise in
L1I MR, supporting the view that performance degrada-
tion is directly influenced by the volume of capability
memory operations introduced by CHERI. Although the
MEM ACCESS RD CTAG event counts tag-dependent memory
accesses, it does not directly capture the latency of tag checks,
which are likely pipelined and integrated with memory
access operations. Nonetheless, a high frequency of these
events indicates frequent reliance on CHERI’s core memory
protection mechanisms. More broadly, the safety guarantees
and capability manipulations introduced by CHERI create a
tightly coupled execution pattern that links instruction-level
events and memory system behaviour. This is reflected in
the stronger correlations observed among metrics such as
cache refills, TLB walks, and stall cycles, as illustrated in
Figure 7. In purecap mode, CAP MEM ACCESS RD/WR events
show strong associations with L2D TLB, L1D CACHE REFILL,
and L1I TLB, suggesting that effective performance tuning
may require a holistic approach, as changes in one metric
often propagate to others.

By leveraging CHERI-specific PMC events, the analysis
shifts from relying on derived metrics such as cache miss
rates to directly observing and quantifying CHERI’s oper-
ational effects within the memory system. This creates a
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clearer link between CHERI’s architectural features and their
runtime performance impact, offering a novel perspective in
this workload characterization.

5. Discussion
Our study highlights a complex performance landscape

for CHERI. While CHERI enforces strong memory safety
through hardware capabilities, it can introduce non-uniform
performance overheads that should be assessed as workloads
evolve. A major source of overhead is the increased memory
footprint: replacing 64-bit pointers with 128-bit capabilities
enlarges data structures, raising L1I and L2D cache miss
rates and increasing TLB pressure as applications access
more pages or exhibit weaker locality.

The impact is highly application dependent. For example,
LLaMA.cpp, an LLM inference workload, shows only a 1.29%
overhead in purecap mode, with matrix multiplication even
gaining a small speed-up. This challenges the expectation that
memory-bound workloads suffer most from larger footprints.
Our top-down analysis shows that LLaMA.cpp becomes less
memory-bound (33.1% to 21.2%) and more core-bound, as
sequential reads dominate its access patterns. In contrast,
QuickJS incurs a 165% overhead in purecap mode. Although
classified as compute-intensive, it executes more than 18,000
small JavaScript programs in sequence, with parsing, object
allocation, execution, and teardown operations repeatedly
stressing the L1I cache and the instruction and data TLBs.

Branch predictor stalls also contribute to overhead.
Frequent PCC-bound changes during interprocedural con-
trol flow and virtual calls cause frontend inefficiencies.
The purecap benchmark ABI reduces this effect for some
SPEC benchmarks (e.g., 523.xalancbmk r, 541.leela r,
520.omnetpp r), but has little impact on real-world applica-
tions such as LLaMA.cpp and SQLite, highlighting the need for
program-specific tuning. Despite pointer size extensions and
permission checks, binary sizes do not increase significantly,
supporting CHERI’s feasibility for resource-constrained sys-
tems.

6. Related Work
Software Solutions for Memory Safety. Languages such
as C#, Go, Java [32], Python, Rust [17], and Swift improve
memory safety through strong typing, bounds checks, and
compile-time enforcement [19]. They prevent common errors
(e.g., buffer overflows, use-after-free) but remain vulnerable
to logic flaws and insecure coding. To improve safety
in unsafe languages, Apple modified its C compiler for
iBoot [1], while Microsoft’s Checked C adds static and
dynamic checks [8, 29].
Hardware-Assisted Memory Safety. Vendors have intro-
duced hardware features to enforce safety at runtime. Arm’s
Memory Tagging Extension (MTE) [3] detects use-after-free
and out-of-bounds accesses with memory tags, while Intel’s
Control-flow Enforcement Technology (CET) [15] enforces
control-flow integrity. Isolation-based schemes include Intel
SGX [16, 28] and Arm TrustZone [25], though both suffer

overhead from context switches. In contrast, CHERI enforces
fine-grained spatial and temporal safety using tagged pointers
without context-switching costs, and recent work extends it
to accelerators [9].
CHERI Capabilities. CHERI introduces capability-based
hardware enforcement of memory safety. Tools such as
ESBMC-CHERI [5] enable program verification, while
designs like Cheri Concentrate [40] reduce pointer over-
head. Extensions such as Capability Speculation Contracts
(CSC) [13] and Cornucopia Reloaded [12] target speculative
execution and temporal safety. On the software side, large
systems, including the Linux kernel, are being ported to
CHERI-enabled RISC-V platforms [34], advancing ecosys-
tem maturity.
CHERI Performance Characterization. Performance eval-
uations of CHERI remain limited. An early study [36]
reported high-level results for SPEC CPU 2006 on Arm
Morello. Our work expands this by analyzing a broader
set of applications across execution modes, using hardware
counters for detailed microarchitectural insights. This large-
scale study provides a more complete picture of CHERI’s
overheads and implications, supporting the design of secure
and efficient capability-based systems.

7. Conclusion
We have presented a large-scale empirical study of

workload characteristics on the CHERI-enabled Morello
platform. Our study leverages the platform’s hardware per-
formance monitoring counters (PMUs) to collect a set of
microarchitectural event data, from which we derive metrics
to analyze the performance of 20 benchmarks across three
ABI modes: hybrid, pure-capability, and purecap-benchmark.
We take a top-down approach to study the impact of CHERI
security features on applications and discuss the potential
future directions. Our study provides empirical insights into
the performance implications of CHERI’s memory safety
features and informs the design and optimization of other
hardware-assisted memory security mechanisms.
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Appendix-I: The Compilation and Execution Status of Benchmark Suites
This appendix presents a thorough summary of the resolution of compilation issues for each benchmark suite. It offers

an in-depth analysis of the underlying causes of compilation failures and errors and details the source code modifications
undertaken to enable successful execution.

TABLE 5: Resolution of Compilation Errors in SPECCPU 2017 (I)

Benchmark Description Language Status

520.omnetpp r Discrete event simulation of a large 10
gigabit Ethernet network C++

✔. Compiled. (Add ”stdio.h” header to ”simulator/platdep/platmisc.h” source
file for invoking ”sprintf...” function; Set ”-D LONG LONG SUPPORTED”
in SPEC compilation configuration). Run successfully under three ABIs.

523.xalancbmk r
The XSLT processor for transforming
XML documents into HTML, text, or
other XML document types

C++

✔. Compiled. (Comment ”#include ¡linux/limits.h¿” in
”.../cheribsd/tools/build/cross-build/include/linux/limits.h”; Compile xerces-c
v2.7.0 on CheriBSD-Morello and link this library during cross-compilation;
Replace ftime() function using gettimeofday(); Congiure ”-D GNU SOURCE”
in cross-compilation). Run successfully under three ABIs.

525.x264 r Video compression C ✔. Compiled. (Configure ’-fcommon’ in SPEC compilation; Fix copying errors
when setup ”run” directory through explicit copy operations.)

531.deepsjeng r Alpha-beta tree search & pattern recog-
nition C++ ✔. Compiled.

541.leela r Monte carlo simulation, game tree
search & pattern recognition C++ ✔. Compiled.

557.xz r Data compression based on Lasse
Collin’s XZ utils 5.0.5 C ✔. Compiled.

510.parest r A finite element solver for a biomedical
imaging problem C++ ✔. Compiled.

519.lbm r Lattice Boltzmann Method (LBM) to
simulate incompressible fluids in 3D C ✔. Compiled.

544.nab r A molecular modeling application
based on Nucleic Acid Builder (NAB) C ✔. Compiled.

500.perlbench r The cut-down version of Perl v5.22.1 C Not Compiled. The ’struct FILE.h’ header file is not compatible/supported.

502.gcc r C Language optimizing compiler based
on GCC Version 4.5.0 C

Compiled. (An in-address-space security exception was triggered under both
the purecap and benchmark ABIs, whereas the hybrid ABI executed without
errors.)

505.mcf r Combinatorial optimization / single-
depot vehicle scheduling C

Compiled. (An in-address-space security exception was triggered under both
the purecap and benchmark ABIs, whereas the hybrid ABI executed without
errors.)

548.exchange2 r One game - sudoku puzzle generator Fortran Not Compiled. (Fortran is not supported.)

503.bwaves r
The numerical simulation on blast
waves in three dimensional transonic
transient laminar viscous flow

Fortran Not Compiled. (Fortran is not supported.)

507.cactuBSSN r Utilizing the EinsteinToolkit to solve
the Einstein equations in vacuum

Fortran,
C++, C Not Compiled. (Fortran is not supported.)

508.namd r A parallel program for the simulation
of large biomolecular systems C++

Compiled. (An in-address-space security exception was triggered under both
the purecap and benchmark ABIs, whereas the hybrid ABI executed without
errors.)

511.povray r A free and open source ray-tracing
application C++, C

Compiled. (An in-address-space security exception was triggered under both
the purecap and benchmark ABIs, whereas the hybrid ABI executed without
errors.)

521.wrf r Weather forecasting Fortran Not Compiled. (Fortran is not supported.)

526.blender r A free and open source 3D creation
suite C++, C Not Compiled. (The ’alloca.h’ header file is not found/supported.)

527.cam4 r One atmosphere general circulation
model

Fortran,
C Not Compiled. (Fortran is not supported.)

538.imagick r Image manipulation C
Compiled. (An in-address-space security exception was triggered under both
the purecap and benchmark ABIs, whereas the hybrid ABI executed without
errors.)

549.fotonik3d r Computational electromagnetics Fortran Not Compiled. (Fortran is not supported.)
554.roms r A regional ocean modeling system Fortran Not Compiled. (Fortran is not supported.)

Additional Issue Corrections:
• In the event that sampling is paused as referenced in pmcstat, the configurations are set kern.hwpmc.nsamples=”8192”

and kern.hwpmc.nbuffers pcpu=”256”.
• To successfully execute the speedtest1 SQL benchmark in SQLite, it is necessary to modify the generated benchmark

suite by changing fprintf (g.pScript,”%s”, z) to fprintf(g.pScript,”%s;”, z).
• To achieve successful cross-compilation of QuickJS, it is necessary to generate the reply.c file on the remote device

during the compilation stage, utilizing the intermediate generated binaries produced. The binary compiled using the
benchmark ABI is unable to execute test262 successfully due to an in-address security issue.
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TABLE 6: Resolution of Compilation Errors in SPECCPU 2017 (II)

Benchmark Description Language Status

620.omnetpp s Discrete event simulation of a large 10
gigabit Ethernet network C++

✔. Compiled. (Add ”¡stdio.h¿” header to ”simulator/platdep/plat-
misc.h” source file for invoking ”sprintf...” function; Configure ”-
D LONG LONG SUPPORTED” in compilation.)

623.xalancbmk s
The XSLT processor for transforming
XML documents into HTML, text, or
other XML document types

C++

✔. Compiled. (Comment ”#include ¡linux/limits.h¿” in
”.../cheribsd/tools/build/cross-build/include/linux/limits.h”; Compile xerces-c
v2.7.0 on CheriBSD-Morello and link this library during compilation; Replace
ftime() function using gettimeofday(); Congiure ”-D GNU SOURCE” in
compilation.)

631.deepsjeng s Alpha-beta tree search & pattern recog-
nition C++ ✔. Compiled.

641.leela s Monte carlo simulation, game tree
search & pattern recognition C++ ✔. Compiled.

657.xz s Data compression based on Lasse
Collin’s XZ utils 5.0.5 C

✔. Compiled. (Remove SPEC default configuration ”-fopenmp -
DSPEC OPENMP” and reimplement parallel part using pthreads instead of
OpenMP.)

625.x264 s Video compression C ✔. Compiled. (Fix copying errors when setup ”run” directory through explicit
copy operations.) (Profiling this program found a bug in CheriBSD [41].)

644.nab s A molecular modeling application
based on Nucleic Acid Builder (NAB) C ✔. Compiled. Reimplement parallel part using pthreads, instead of OpenMP

600.perlbench s The cut-down version of Perl v5.22.1 C Not Compiled. (The ’struct FILE.h’ header file is not compatible/supported.)

602.gcc s C Language optimizing compiler based
on GCC Version 4.5.0 C Compiled. (An in-address-space security exception was triggered under both

the purecap and benchmark ABIs, and ld-elf64 error on hybrid ABI.)

605.mcf s Combinatorial optimization / single-
depot vehicle scheduling C Compiled. (An in-address-space security exception was triggered under both

the purecap and benchmark ABIs, and ld-elf64 error on hybrid ABI.)
648.exchange2 s One game - sudoku puzzle generator Fortran Not Compiled. (Fortran is not supported.)

603.bwaves s
The numerical simulation on blast
waves in three dimensional transonic
transient laminar viscous flow

Fortran Not Compiled. (Fortran is not supported.)

607.cactuBSSN s Utilizing the EinsteinToolkit to solve
the Einstein equations in vacuum

Fortran,
C++, C Not Compiled. (Fortran is not supported.)

619.lbm s Lattice Boltzmann Method (LBM) to
simulate incompressible fluids in 3D C

Compiled. Reimplement parallel part using pthreads, instead of OpenMP
and configure pthreads settings. (An in-address-space security exception was
triggered.)

621.wrf s Weather forecasting Fortran Not Compiled. (Fortran is not supported.)

627.cam4 s One atmosphere general circulation
model

Fortran,
C Not Compiled. (Fortran is not supported.)

628.pop2 s Wide-scale ocean modeling (climate
level)

Fortran,
C Not Compiled. (Fortran is not supported.)

638.imagick s Image manipulation C
Compiled. Reimplement parallel part using pthreads, instead of OpenMP. (An
in-address-space security exception was triggered under both the purecap and
benchmark ABIs.)

649.fotonik3d s Computational electromagnetics Fortran Not Compiled. (Fortran is not supported.)
654.roms s A regional ocean modeling system Fortran Not Compiled. (Fortran is not supported.)
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