
Auto-tuning Streamed Applications on Intel Xeon Phi

Peng Zhang∗, Jianbin Fang∗, Tao Tang∗, Canqun Yang∗, Zheng Wang†,
∗Compiler Laboratory, College of Computer, National University of Defense Technology, China

Email: {zhangpeng13a, j.fang, taotang84, canqun}@nudt.edu.cn
†MetaLab, School of Computing and Communications, Lancaster University, United Kingdom

Email: z.wang@lancaster.ac.uk

Abstract—Many-core accelerators, as represented by the
XeonPhi coprocessors and GPGPUs, allow software to ex-
ploit spatial and temporal sharing of computing resources
to improve the overall system performance. To unlock this
performance potential requires software to effectively partition
the hardware resource to maximize the overlap between host-
device communication and accelerator computation, and to
match the granularity of task parallelism to the resource
partition. However, determining the right resource partition
and task parallelism on a per program, per dataset basis is
challenging. This is because the number of possible solutions
is huge, and the benefit of choosing the right solution may
be large, but mistakes can seriously hurt the performance. In
this paper, we present an automatic approach to determine
the hardware resource partition and the task granularity for
any given application, targeting the Intel XeonPhi architecture.
Instead of hand-crafting the heuristic for which the process
will have to repeat for each hardware generation, we em-
ploy machine learning techniques to automatically learn it.
We achieve this by first learning a predictive model offline
using training programs; we then use the learned model to
predict the resource partition and task granularity for any
unseen programs at runtime. We apply our approach to
23 representative parallel applications and evaluate it on a
CPU-XeonPhi mixed heterogenous many-core platform. Our
approach achieves, on average, a 1.6x (upto 5.6x) speedup,
which translates to 94.5% of the performance delivered by a
theoretically perfect predictor.

Keywords-Heterogeneous computing; Parallelism; Perfor-
mance Tuning; Machine learning

I. INTRODUCTION

Heterogeneous many-core systems are now common-
place [1]. The combination of using a host CPU together
with specialized processing units (e.g., GPGPUs or the Intel
XeonPhi) has been shown in many cases to achieve orders
of magnitude performance improvement. Typically, the host
CPU of a heterogeneous platform manages the execution
context while the computation is offloaded to the accelerator
or coprocessor. Effectively leveraging such platforms not
only enables the achievement of high performance, but also
increases the energy efficiency.

While the heterogeneous many-core design offers the
potential for energy-efficient, high-performance computing,
software developers are finding it increasingly hard to deal
with the complexity of these systems [2]. In particular,

programmers need to effectively manage the host-device
communication, because the communication overhead can
completely eclipse the benefit of computation off-loading
if not careful [3]–[5]. Heterogeneous streaming has been
proposed as a solution to amortize the host-device com-
munication cost [6]. It works by partitioning the processor
cores to allow independent communication and computation
tasks (i.e. streams) to run concurrently on different hardware
resources, which effectively overlaps the kernel execution
with data movements. Representative heterogeneous stream-
ing implementations include CUDA Streams [7], OpenCL
Command Queues [8], and Intel’s hStreams [6], [9]. These
implementations allow the program to spawn more than
one stream/pipeline so that the data movement stage of one
pipeline overlaps the kernel execution stage of another.

Prior work on heterogeneous streams mainly targets
GPUs [10]–[12]. While also offering heterogeneous stream
execution, the OS-enabled Intel XeonPhi coprocessor pro-
vides some unique features that are currently unavailable
on the GPU. For example, beside specifying the number of
streams , developers can explicitly map streams to different
groups of cores on XeonPhi to control the number of cores
of each hardware partition. This parameter is not exposed
to programmers on GPUs, making previous work on GPU-
based stream optimizations infeasible to fully exploit Xeon-
Phi (see also Section V-C). One the other hand, there are
ample evidences showing that choosing the right stream con-
figuration, i.e., the number of processor core partitions and
the number of concurrent tasks of a streamed application,
values, has a significant impact on the streamed application’s
performance on XeonPhi [13], [14]. However, attempting to
find the optimum values through exhaustive search would be
ineffective, because the range of the possible values for the
two parameters is huge. What we need is a technique that
automatically determines the optimal stream configuration
for any streamed application in a fast manner.

This paper presents a novel runtime approach to determine
the right number of partitions and tasks for heterogeneous
streams, targeting the Intel XeonPhi architecture. We do
so by employing machine learning techniques to automati-
cally construct a predictive model to decide at runtime the
optimal stream configuration for any streamed application.
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Figure 1. Exploit pipeline parallelism through temporal sharing.

Our predictor is first trained off-line. Then, using code
and dynamic runtime features of the program, the model
predicts the best configuration for a new, unseen program.
Our approach avoids the pitfalls of using a hard-wired
heuristic that requires human modification every time when
the architecture evolves, where the number and the type of
cores are likely to change from one generation to the next.

We apply our approach to 23 representative benchmarks,
and evaluate it on a heterogeneous many-core platform that
has a general purposed multi-core CPU and a 57-core Intel
XeonPhi coprocessor. Our approach achieves, on average, a
1.6x speedup over the optimized, non-streamed code. This
translates to 94.5% of the best available performance.

We make the following technical contributions:
• We present the first machine learning model for auto-

matically determining the optimal stream configuration
on Intel XeonPhi. Note that we do not seek to advance
the machine learning algorithm itself; instead, we show
how machine learning can be used to address the
challenging problem of tuning stream configurations;

• We develop a fully automatic approach for feature
selection and training data generation;

• We show that our approach delivers constantly better
performance over the single-streamed execution across
programs and inputs;

• Our approach is immediately deployable and does not
require any modification to the application source code.

II. BACKGROUND AND OVERVIEW

In this section, we first give a brief introduction of het-
erogeneous streams; we then define the scope of this work,
before motivating the need of our scheme and providing an
overview of our approach.

A. Heterogeneous Streams

The idea of heterogeneous streams is to exploit temporal
and spatial sharing of the computing resources.

Temporal Sharing. Code written for heterogeneous comput-
ing devices typically consists of several stages such as host
device communication and computation. Using temporal
sharing, one can overlap some of these stages to exploit
pipeline parallelism to improve performance. This paradigm
is illustrated in Figure 1. In this example, we can exploit
temporal sharing to overlap the host-device communication
and computation stages to achieve better runtime when

1 / / s e t t i n g t h e p a r t i t i o n−s i z e and t a s k g r a n u l a r i t y
hStreams app in i t ( p a r t i t i o n s i z e , s treams p part ) ;

3
/ / s t r e a m queue i d

5 s tream id = 0 ;
f o r ( . . . ) {

7 / / enquque hos t−d e v i c e t r a n s f e r t o c u r r e n t s t r e a m
hStreams app xfer memory ( , , , stream id ,

↪→ HSTR SRC TO SINK , . . . ) ;
9 . . .

/ / enqueue c o m p u t a t i o n t o t h e c u r r e n t s t r e a m
11 hStreams EnqueueCompute ( stream id , ” k e r n e l 1 ” , . . . ) ;

. . .
13 / / move t o t h e n e x t s t r e a m

s tream id = ( s tream id ++) % MAX STR;
15 }

/ / t r a n s f e r d a t a back t o h o s t
17 hSt reams app xfer memory ( , , , HSTR SINK TO SRC , . . . ) ;

Figure 2. Example hStreams code.

compared to execute every stage sequentially. One way of
exploiting temporal sharing is to divide an application into
independent tasks so that they can run in a pipeline fashion.

Spatial Sharing. Modern many-core accelerators offer a
large number of processing units. Since many applications
cannot fully utilize all the cores at a time, we can partition
the computing units into multiple groups to concurrently
execute multiple tasks. In this way, the computing resource
is spatially shared across concurrently-running application
tasks. The key to spatial sharing is to determine the right
number of partitions, because over-provisioning of pro-
cessing units would waste computing resources but under-
provisioning would lead to slowed down performance.

B. Problem Scope

Our work aims to improve the performance of a data
parallel application by exploiting spatial and temporal shar-
ing of heterogeneous streams. We do so by determining at
runtime how many partitions should be used to group the
cores (#partitions) and how many data parallel tasks (#tasks)
should be used to run the application. We target the Intel
XeonPhi architecture, but our methodology is generally ap-
plicable and can be extended to other architectures including
GPGPUs and FPGAs.

Code Example. Figure 2 gives a simplified code example
written with Intel’s hStreams APIs. At line 2 we initialize
the stream execution by setting the number of partitions
and tasks/streams per partition. This initialization process
essentially creates multiple processor domains and deter-
mines how many logical streams can run on a partition. In
the for loop (lines 7-14) we enqueue the communication
and computation tasks to a number of streams identified by
the stream_id variable. In this way, communication and
computation of different streams can be overlapped during
execution (temporal sharing); and streams on different pro-
cessor domains (or partitions) can run concurrently (spatial
sharing). Our predictive model determines the #partitions
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Figure 3. Heatmaps show the resultant speedup (over non-streamed) of binomial and prefixsum under different stream configurations. The #partitions
and #tasks have a significant impact on the resultant performance, and the sweat spots are sparse and vary across programs.

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16
C1 1.41 1.33 1.10 1.17 1.16 1.15 1.07 1.07 1.01 0.86 0.98 0.96 1.04 1.05 0.86 0.99
C2 1.28 1.46 1.27 1.17 1.18 1.09 1.14 1.05 1.00 0.97 1.05 1.00 1.05 0.98 1.01 0.75
C3 1.28 1.18 1.29 1.22 1.14 1.00 1.05 1.00 1.04 0.95 1.03 0.96 0.99 1.01 0.99 1.03
C4 1.14 1.06 1.05 1.33 1.23 1.21 1.14 1.12 1.16 1.11 1.06 1.00 0.98 0.46 1.06 0.85
C5 1.16 1.15 1.20 1.12 1.27 1.18 1.15 1.13 1.08 1.08 1.00 0.98 0.96 0.99 1.06 1.03
C6 1.24 1.06 1.08 1.16 1.19 1.24 1.20 1.06 1.11 0.96 0.94 0.94 1.06 0.93 1.02 1.06
C7 1.16 1.10 1.13 1.21 1.20 1.10 1.31 1.09 1.13 0.97 0.99 0.95 0.99 0.56 0.95 1.03
C8 1.23 1.05 1.21 1.15 1.12 1.14 1.17 1.14 1.14 0.90 0.98 1.05 0.99 0.43 0.99 1.02
C9 1.19 1.07 1.10 1.17 1.22 1.19 1.20 1.11 1.17 0.99 1.04 0.96 1.00 0.63 0.97 1.06
C10 1.13 0.97 1.07 1.05 1.27 1.14 1.24 0.98 1.04 1.15 0.94 1.03 0.96 0.41 0.99 1.00
C11 1.15 1.13 1.08 1.19 1.10 1.08 1.15 0.97 0.97 1.01 1.11 0.80 1.02 0.96 1.02 1.00
C12 1.02 0.94 1.17 1.17 1.21 1.10 1.17 0.94 1.00 0.96 0.96 1.06 1.04 0.47 1.08 1.10
C13 0.94 0.96 0.96 1.22 0.96 1.05 1.00 0.86 0.95 0.95 1.00 1.04 1.17 0.49 0.98 0.99
C14 0.89 1.03 0.81 0.89 0.89 0.86 0.84 0.91 0.92 1.04 0.92 0.99 1.00 1.07 1.04 1.10
C15 1.01 1.10 1.08 1.11 1.05 1.01 0.98 0.88 0.88 0.90 0.95 0.95 1.04 0.95 1.11 0.96
C16 0.82 0.81 0.97 1.12 1.02 1.07 1.00 0.94 0.96 0.99 1.06 1.02 1.04 0.41 1.03 1.14

Figure 4. Colour table showing the speedups of best-performing configu-
rations across inputs for dct. Each cell shows the performance for one of
the 16 best-performing configurations, Cn, on a given input, Dn. The best
configuration varies across inputs and a good configuration on one input
can give poor performance on another dataset.

and the #tasks before invoking the hStreams initialization
routine, hStreams_app_init(). We also create a wrap
for this API to automatically invoke our predictive model, so
no modification to the application source code is required.

C. Motivating Examples

Consider Figure 3 which shows the resultant performance
improvement over the non-streamed version of the code
for two applications on a 57-core Intel XeonPhi system. It
is observed from this example that no all stream configu-
rations give improved performance. As can be seen from
the diagrams, the search space of stream configuration is
huge but good configurations are sparse. The performance
varies significantly over stream configurations (#partitions,
#tasks). The optimal #tasks for binomial ranges from 1
to 30, and the best #partitions is between 1 and 40. In con-
trast to binomial, prefixsum benefits from fine-grained
parallelism when using a larger #tasks (220 to 224) and
#partitions (60 to 80). However, the stream configurations
that are effective for prefixsum give no speedup over the
non-streamed version for binomial.

Now consider Figure 4 that shows the speedups of
dct under 16 configurations over the non-streamed ver-
sion, where each configuration is found to give the best-

performance for one of the 16 inputs. In the color table,
each cell shows the performance of a stream configuration
(C1, ..., C16) on a specific input dataset (D1, ..., D16); and
the values along the diagonal line represent the best-available
performance for an input. As can be seen from the figure,
the best stream configuration can vary across inputs for the
same benchmark. For example, while C4 gives 1.33 speedup
for dataset D4, it delivers a poor performance for dataset
D14 by doubling the execution time over the non-streamed
version. This diagram also suggests that none of the 16
configurations gives improved performance for all inputs.

Lesson Learned. These two examples demonstrate that
choosing the stream configuration has a great impact on
the resultant performance and the best configuration must
be determined on a per-program and per-dataset basis.
Attempting to find the optimal configuration through means
of an exhaustive search would be ineffective, the overhead
involved would be far bigger than the potential benefits.
Online search algorithms, while can speedup the search
process, the overhead can still outweigh the benefit. For
example, when applying simulated annealing to binomial,
the best-found configuration only reaches 84% of the best-
available performance after 310,728 iterations1. Classical
hand-written heuristics are not ideal either, as they are
not only complex to develop, but are likely to fail due to
the variety of programs and the ever-changing hardware
architecture. An alternate approach, and the one we chose
to use, is to use machine learning to automatically construct
a predictive model directly predict the best configuration,
providing minimal runtime, and having little development
overhead when targeting new architectures.

D. Overview

Our library-based approach, depicted in Figure 5, is
completely automated. To determine the best streaming con-
figuration, our approach follows a number of steps described
as follows. We use a set of information or features to
capture the characteristics of the program. We develop a

1Later in Section V-A1, we show that our approach achieves 98% of the
best-available performance for dct.
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Figure 5. Our machine learning based model predicts the optimal stream
configuration based on the code and runtime features.
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Figure 6. The training process of our approach

LLVM [15] compiler pass to extract static code features at
compile time, and a low-overhead profiling pass to collect
runtime information at execution time. Because profiling
also contributes to the final program output, no computation
cycle is wasted. At runtime, a predictive model (that is
trained offline) takes in the feature values and predicts
the optimal stream configuration. The overhead of runtime
feature collection and prediction is a few milliseconds,
which is included in all our experimental results.

III. PREDICTIVE MODELING

Our model for predicting the best stream configuration is
a Support Vector Machine (SVM) with a quadratic function
kernel. The model is implemented using libSVM (C++
version) [16]. We have evaluated a number of alterna-
tive modeling techniques, including regression, K-Nearest
neighbour (KNN), decision trees, and the artificial neural
network (ANN), etc. We chose SVM because it gives the
best performance and can model both linear and non-linear
problems (Section V-D2). The model takes in feature values
and produces a label for the optimal stream configuration.

Building and using such a model follows a 3-step process
for supervised learning: (i) generate training data (ii) train a
predictive model (iii) use the predictor, described as follows.

A. Training the Predictor

Our method for model training is shown in Figure 6.
To learn a new predictor we first need to find the best
stream configuration for each training program, and extract
the feature values from the program. We then use this set of
feature values and optimal configurations to train a model.

1) Generating Training Data: We use cross validation by
excluding the testing benchmarks from the training dataset.
To generate the training data for our model we used 15
programs. We execute each training program and benchmark
a number of times until the gap of the upper and lower
confidence bounds is smaller than 5% under a 95% confi-
dence interval setting. We exhaustively execute each training
program across all of our considered stream configurations,

Algorithm 1 The Label Merging Algorithm.
1: input: LS – label set, PS – program set, DS – dataset
2: output: LSr – reduced label set
3: procedure MERGING LABELS(LS, PS, DS, N ; LSr, Nr)
4: LSr ← LS,Nr ← N
5: repeat
6: for s← 0, Nr do
7: for t← 0, Nr do
8: ps ← PID(PS, s), pt ← PID(PS, t)
9: ds ← DID(DS, s), dt ← DID(DS, t)

10: if s 6= t then
11: w1, w2, w3 ← 0
12: LSst ← LSs u LSt

13: w1 ← Counts(LSst)
14: if ps == pt then . the same program
15: w2 ← 150
16: end if
17: if ds == dt then . the same dataset
18: w3 ← 30
19: end if
20: w(s, t)← w1 + w2 + w3

21: end if
22: end for
23: end for
24: RankOnWeight(w) . Rank w on the weights
25: MergeAndUpdate(w,LS,N,LSr,Nr)
26: until LSi u LSj = φ, ∀i, j ∈ Nr ∧ i 6= j
27: end procedure

and record the performance of each. Specifically, we profile
the program using the #partitions ranging from 1 to 224
and the #tasks ranging from 1 to 256 2. Next, we record the
best performing configuration for each program and dataset,
keeping a label of each. Finally, we extract the values of our
selected set of features from each program and dataset.

Data Labeling. Our initial labeling process generates over
100 labels while we only have a small number of training
samples. The expected predicting accuracy is deemed to be
low as some of the labels only have a handful of examples.
Therefore, we have to merge labels after generating the
raw training data. Our label merging procedure is shown
in Algorithm 1. This merging process aims to reduce the
number of labels to an order of magnitude less than that
of samples (from N to a configurable parameter Nr). The
input are the training samples, each with a set of well-
performing stream configurations (e.g., the top 3% best-
performing configurations). We calculate the similarity of
two labels using three quantitative metrics: (a) the common
best configurations (we aim to keep the common best
configurations), (b) whether the samples are from the same
program, and (c) whether they are with the same dataset.
The three metrics are denoted by ω1, ω2, and ω3 respectively
in Algorithm 1. We discuss the performance impact of the
label merging algorithm in Section V-D1. Then, we sort the
weights in a descending order, merge corresponding labels,
and update the label for each sample. The output samples
are labeled with merged classes. Applying the data labeling
process described above results in 28 labels (i.e., Nr=28).

2We chose these values because configuration settings beyond these
values give poor performance during our initial evaluation.



2) Building The Model: The corresponding configuration
labels, along with the feature values for all training pro-
grams, are passed to a learning algorithm. The algorithm
finds a correlation between the feature values and the optimal
stream configuration. The output of our learning algorithm is
a SVM model where the weights of the model are determined
from the training data. We use the parameter tuning tool
provided by libSVM to determine the kernel parameters.
Parameter search is performed on the training dataset using
cross-validation. In our case, the overall training process
(which is dominated by training data generation) takes less
than a week on a single machine. Since training is performed
only once “at the factory”, this is a one-off cost.

B. Features

Our predictive models are based exclusively on code
and dynamic features of the target programs. Code features
are extracted from the program source code, and dynamic
features are collected using hardware performance counters
during the initial profiling run of the target application. We
restrict us to use hardware performance counters that are
commonly available on modern processors such as the data
cache misses to ensure that our approach can be applied to
a wide range of architectures.

We considered 38 candidate raw features in this work.
Some features were chosen from our intuition based on
factors that can affect the performance such as dts (host-
device data transfer size) and #xfer_mem, while other
features were chosen based on previous work [17], [18].

1) Feature Selection: To build an accurate predictive
model through supervised learning, the training sample size
typically needs to be at least one order of magnitude greater
than the number of features. In this work, we start from
280 training samples and 38 raw features, so we would like
to reduce the number of features in use. Our process for
feature selection is fully automatic, described as follows.
We first combine several raw features to form a set of
combined normalized features, which are able to carry more
information than the individual parts. For example, instead
of reporting raw branch hit and miss counts we use the
branch miss rate. Next, we removed raw features that carried
similar information which is already captured by chosen
features. To find which features are closely correlated we
constructed a correlation coefficient matrix using the Pearson
correlation coefficient. The closer a coefficient between two
features is to +/-1, the stronger the correlation between the
two input features. We removed any feature which had a
correlation coefficient (taking the absolute value) greater
than 0.7. Similar features include the number of executed
instructions and the number of E-stage cycles that were suc-
cessfully completed. Our feature selection process reduces
the number of features to 10, which are listed in Table I.
Since our approach for feature selection is automatic, the
approach can be applied to other sets of candidate features.

Table I
FINAL SELECTED FEATURES.

Feature Description

loop nest at which level the loop can be parallelized
loop count # of the parallel loop iterations
#xfer mem # of host-device transfer API calls
dts total host-device transfer size
redundant transfer size host-device transfer size among overlapping tasks
max blocks the maximum number of tasks of the appliation
min task unit the minimum task granularity for a partition
# instructions the total number of instructions of the kernel
branch miss branch miss rate
L1 DCR L1 Data cache miss rate
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Figure 7. Feature importance according to the Varimax rotation.

It is to note that feature selection is also performed using
cross-validation (see also Section IV-B).

2) Feature Scaling: Supervised learning typically works
better if the feature values lie in a certain range. Therefore,
we scaled the value for each of our features between the
range of 0 and 1. We record the maximum and minimum
value of each feature found at the training phase, and
use these values to scale features extracted from a new
application after deployment.

3) Feature Importance: To understand the usefulness of
each selected feature, we apply a factor analysis tech-
nique called Varimax rotation [19] to the feature space
transformed by the principal component analysis (PCA).
This technique quantifies the contribution of each feature
to the overall variance in each of the PCA dimensions.
Intuitively, the more variances a feature brings to the space,
the more useful information the feature carries. Features
that capture the parallelism degree (e.g. max blocks),
host-device communication (e.g. redundant transfer
size), and computation (e.g. #instructions) are found
to be important. Other features such as L1 DCR and loop
nest are useful, but are less important compared to others.
This figure shows that prediction can accurately draw upon
a subset of aggregated feature values.

C. Runtime Deployment
Once we have built and trained our predicted model as

described above, we can use it to predict the best stream
configuration for any new, unseen program. When an appli-
cation is launched, we will first extract the feature values



of the program. Code features (such as loop count)
are extracted from the program source. Dynamic features
(such as branch miss) are extracted by profiling the
program without partitioning for several microseconds. After
feature collection, we feed the feature values to the offline
trained model which outputs a label indicating the stream
configuration to use for the target program.

Adapt to Changing Program Phases. Our approach can
adapt to different behaviors across kernels because pre-
dictions are performed on a per-kernel basis. It can be
extended to adapt phase changes within a kernel. This
can be achieved by checking periodically sampling if the
performance counter readings are significantly different from
the ones use for the initial prediction to trigger re-prediction
and re-configuration. Dynamic re-configuration will require
extending hStreams to adjust thread mapping and having
hardware support to stop and resume the execution contexts.

IV. EXPERIMENTAL SETUP

A. Hardware, System Software and Benchmarks
Platform. Our evaluation platform is an Intel Xeon server
with an Intel dual-socket 8-core Xeon CPU @ 2.6 Ghz (16
cores in total) and an Intel Xeon 31SP Phi accelerator (57
cores). The host CPUs and the accelerator are connected
through PCIe. The host environment runs Redhat Linux
v7.0 (with kernel v.3.10). The coprocessor environment runs
a customized uOS (v2.6.38.8). We use Intel’s MPSS (v3.6)
to communicate between the host and the coprocessor and
Intel’s hStreams library (v3.6).

Benchmarks. As currently there exist very few programs
written with Intel’s hStreams, we faithfully translated
21 applications to hStreams from the commonly used
benchmark suites3. Table II gives the full list of these
benchmarks. Among them, convolutionFFT2d and
convolutionSeparable have algorithm-dependent pa-
rameters, which are regarded as different benchmarks in the
experiments. This setting gives us a total of 23 programs.
We run the majority of the programs using over 25 differ-
ent datasets, except for some applications where we used
around 10 datasets because the algorithmic constraints of
the applications prevent us from generating a large number
of inputs.

B. Competitive Approaches

Because there is currently no expert-tuned heuristic for
choosing stream configurations on XeonPhi, we compare
our approach against two recent models for predicting the
optimal stream configuration on GPUs. As it is currently not
possible to configure the number of partitions on GPUs, the
relevant models can only predict the number of tasks (or
streams).

3Our benchmarks can be downloaded from https://github.com/
Wisdom-moon/hStreams-benchmark.git.

Table II
PROGRAMS USED IN OUR EXPERIMENTS.

Suite Name Acronym Name Acronym

convol.Separable convsepr1(8) dotProduct dotprod
convolutionFFT2d fftx1y1(4y3) fwt fwt
MonteCarlo montecarlo matVecMul mvmult
scalarProd scalarprod transpose transpose

NVIDIA
SDK

vectorAdd vecadd
AMD
SDK

binomial binomial BlackScholes blackscholes
dct dct prefixSum prefix
bfs bfs histo histo
lbm lbm mri-q mri-q
mri-gridding mri-gridding sad sadParboil
sgemm sgemm spmv spmv

1) Liu et al.: In [12], Liu et al. use linear regression
models to search for the optimal number of tasks for
GPU programs [12]. The approach employs several analytic
models described as follows.

For a task with an input data size of m, the transferring
time between the CPU and the GPU, Tt, is determined as
Tt = α·m+β, and the computation time, Tc, is calculated as:
Tc = η ·m+ γ where the model coefficients, α, β, η and γ,
are determined through empirical experiments. For a given
kernel with N input data elements running using n streams,
this approach partitions the computation into n tasks, where
the data size for each task, m, is equal to N /n. Therefore,
the total execution time, Ttotal, can be determined by:

Ttotal = Tt + nTc = α ·m+
Nγ

m
+Nη + β

By calculating the partial differential and second-order par-
tial differential of Ttotal with respect to m, we can obtain
the optimal task-granularity as m =

√
Nγ
α . Then we can

calculate the number of tasks (n). Note that, we set the
#partitions to be the same as n for XeonPhi.

2) Werkhoven et al.: The work presented by Werkhoven
et al. models the performance of data transfers between the
CPU and the GPU [10]. They use the LogGP model to
estimate the host-device data transfer time. Specifically, the
model estimates the data transfer time using five parameters:
the communication latency (L), overhead (o), the gap (g),
the number of processors (P ), and the PCIe bandwidth (G).

Let Bhd denotes the amount of data transferred from the
host to the device and Bdh denotes vice versa, and Tkernel
donates the kernel execution time. Then, the optimal number
of streams (i.e., #tasks), Ns, can be estimated by solving the
following equations:

Bdh∗Gdh+g∗(Ns−1) =

{
Tkernel

Ns
+ Bdh

Ns
∗Gdh, ifBdh > Bhd

Bhd
Ns

∗Ghd + Tkernel
Ns

, otherwise

Again, for this model, we set the #partitions to be equal to
the optimal Ns value on XeonPhi.

C. Evaluation Methodology

Model Evaluation. We use cross-validation to evaluate
our machine learning model. Our model is trained using
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Figure 8. Overall performance compared to a single stream version. Our
approach achieves, on average, 94.5% of the oracle performance. The min-
max bars show the range of performance achieved across different inputs.
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Figure 9. Reduction of kernel computation time over a single stream
execution. The performance improvement comes from the reduction of the
threading overhead. A stream configuration is annotated as (#partitions,
#tasks).

benchmarks from the AMD and NVIDIA SDK suites, we
then apply the trained model to benchmarks from the Parboil
suite. We apply leave-one-out cross validation to the AMD
and NVIDIA SDK suites. This means that we exclude the
target program from the training program set, and learn
a model using the remaining programs from the AMD
and NVIDIA suites; we then then apply the learnt model
to the testing program. We repeat this process to ensure
each benchmark from the AMD and NVIDIA suites is
tested. It is a standard evaluation methodology, providing an
estimate of the generalization ability of a machine-learning
model in predicting unseen data. Note that we exclude both
convolutionFFT2d and convolutionSeparable
from the training set when one of the two is evaluated.

Performance Report. We run each program under a stream
configuration multiple times and report the geometric mean
of the runtime. To determine how many runs are needed,
we calculated the confidence range using a 95% confidence
interval and make sure that the difference between the upper
and lower confidence bounds is smaller than 5%.

V. EXPERIMENTAL RESULTS

In this section, we first present the overall performance of
our approach. We then compare our approach to the fixed
stream configuration and the two competitive approaches and
before discussing the working mechanism of our scheme.

A. Overall Performance

In this experiment, we exhaustively profiled each appli-
cation with all possible stream configurations and report

the best-found performance as the Oracle performance. The
Oracle performance gives an indication of how close our
approach is to a theoretically perfect solution. The baseline
used to calculate the speedup is running the application using
a single stream without processor core partitioning.

1) Overall Results: The result is shown in Figure 8. The
min-max bar on the diagram shows the range of speedups per
application across all evaluated inputs. Overall, our approach
achieves an average speedup of 1.6× over the non-streamed
code. This translates to 94.5% of the Oracle performance.
Although our model is not trained on the Parboil benchmark
suite, it achieves good performance, delivering 97.8% of the
Oracle performance on this benchmark suite. This demon-
strates the portability of our approach across benchmarks.

2) Analysis of High Speedup Cases: We found that there
are several benchmarks obtain a speedup of over 2×. After
having a closer investigation, we notice that such perfor-
mance is because that streaming can also reduce the kernel
execution time for these applications.

To quantify the benefit of kernel time reduction, we
measure the kernel execution time with and without multiple
streams and calculate the speedup between them. Note that
we exclude the host-device communication time in this case.
The kernel time improvement for transpose, binomial,
and fftx1y1 is shown in Figure 9. As can be seen from the
diagram, choosing a good stream configuration can lead to
more than 4x reduction on the kernel execution time. This is
because these benchmarks are implemented by parallelizing
the inner loop within a nested loop. During runtime, the
parallel threads working on the inner loop will need to be
created, synchronized, or destroyed for each outer loop iter-
ation. This threading overhead could be significant when the
outer loop iterates many times. When using multiple streams,
we essentially divide the whole outer loop iteration space
into multiple smaller iteration space. This allows multiple
groups of threads to be managed simultaneously, leading
to a significant decrease in threading overhead and faster
kernel execution time. On the other hand, we note that using
too many streams and partitions will lead to a performance
decrease. This is due to the fact that stream management
also comes at a cost, which increases as the number of
partitions increases. Nonetheless, for applications where the
kernel computation domains the program execution time, by
reducing the kernel time can lead to additional improvement,
yielding more than 2x speedups.

3) Speedup Distribution: We show the speedups per
benchmark across datasets in Figure 10. The shape of the
violin plot corresponds to the speedup distribution. We see
that the speedups of montecarlo and prefix distribute
fairly uniformly while the data distribution of fftx1y1 and
fftx4y3 is multimodal (i.e. it has two peaks). Further, the
input datasets have little impact on the behavior of fwt and
lbm so the speedups remain constant across datasets. To
conclude, the streaming speedups of some applications are
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Figure 10. Violin plot showing the speedups per benchmark across
datasets. The shape of the violin corresponds to the speedup distribution.
The thick black line shows where 50% of the data lies.
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Figure 11. The relation between computation-communication ratio and
the speedup. The computation-communication ratio is normalized using
the natural logarithm function. Thus, the kernel computation time equals
the host-device communication time when ratio = 0. In general, a higher
computation-communication ratio leads to a better speedup.

sensitive to the input datasets while that of others are not.
4) Correlation Analysis: Figure 11 shows the rela-

tion between the computation-communication ratio and
the achieved speedup when using heterogeneous streams
across all benchmarks and datasets. We see that the
computation-communication ratio varies over the bench-
marks and the speedup changes accordingly, but in general
a higher computation-to-communication ratio leads to a
greater speedup. As explained in Section V-A2, in addition
to overlapping the computation and communication, our
approach can also reduce the kernel computation time by
choosing the right stream configuration. Therefore, bench-
marks with a high computation-communication ratio also
benefit from a reduction in the kernel computation time.

To quantify the relation between the computation-
communication ratio and the speedup, we calculate the
Pearson correlation coefficient of the two variables. The
calculation gives a correlation coefficient of 0.7, indicating
that the two variables (the computation-communication ra-
tio and the speedup) have a strong linear correlation. By
carefully selecting the stream configuration, our approach
tries to maximize the overlap between communication and
computation, which thus leads to favourable performance.

Summary. The performance improvement of our approach
comes from two factors. First, by predicting the right pro-
cessor partition, our approach allows effective overlapping
of the host-device communication and computation. Second,
by matching task parallelism to the resource partition, our
approach can reduce the overhead of thread management,
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Figure 12. Comparing the performance with two fixed configurations:
config. (4, 16) of 4 partitions and 16 tasks per partition, and config.
(17, 85) of 17 partitions and 5 tasks per partition.
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Figure 13. Violin plot showing the speedups per scheme across bench-
marks and datasets. The shape of the violin corresponds to the speedup
distribution to the oracle performance. The thick black line shows where
50% of the data lies.

compared to the single stream execution. When the host-
device communication time dominates the streaming pro-
cess, the performance improvement mainly comes from
computation-communication overlapping and the speedup
from streaming is consistantly less than 2×. When the
kernel execution time dominates the stream process, the
application can benefit from the overhead reduction of thread
management. In this case, the speedup can be as large as 5×.
This trend can be clearly seen from Figure 11.

B. Compare to Fixed Stream Configurations

A natural question to ask is that: is there a fixed
stream configuration that gives reasonable good perfor-
mance across benchmarks and datasets? To answer this
question, we compare our predictive modeling based ap-
proach to two specific configurations. Our justification for
using the two configurations are described as follows. Our
initial results in Section II indicate that using the stream
configuration of (4, 16), i.e. partitioning the cores to 4
groups and running 4 tasks on each partition (16 tasks in
total), gives good performance. The statistics obtained from
the training data suggest that the configuration of (17, 85)
give the best averaged performance across training samples.

Based on these two observations, we compare our
adaptive approach to two configurations described above.
The results are shown in Figure 12. We observe im-
proved performance for several benchmarks such as
mri-gridding, transpose, sad, under both config-
urations, but slowed down performance for dotprod,
vecadd, blackscholes, lbm, and mir-q. For
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Figure 14. Comparing against Liu et al. and Werkhoven et al.

prefix, configuration (17, 85) delivers improved perfor-
mance while configuration (4, 16) leads to slowed down
performance. Overall, none of the two fixed configurations
give an improved performance on average. On average, our
approach outperforms the two fixed configurations by a fac-
tor of 1.4, and delivers consistently improved performance
across benchmarks and datasets.

The violin plot in Figure 13 shows how far is each of the
three schemes to the Oracle performance across benchmarks
and datasets. Our approach not only delivers the closest
performance to the Oracle, but also has the largest number
of samples whose performance is next to the Oracle. By
contrast, the performance given by the fixed configurations
for many samples are further from the Oracle performance.

This experiment confirms that a fixed configuration fails
to deliver improved performance across applications and
datasets, and selecting a right stream configuration on a per
program, per dataset basis is thus required.

C. Compare to Alternated Models

In this experiment, we compare our approach to the
two recent analytical models described in Section IV-B.
The results are shown in Figures 14 and 15. Both models
prefer using 2 tasks across benchmarks and datasets. This is
because that the analytical models simply assume that task
partition has no effect on kernel’s performance, and do not
consider the thread management overhead.

From Figure 14, we see that our approach can obtain bet-
ter performance for nearly all programs. For the remaining
handful programs, all three approaches deliver comparable
performance. Compare to Figure 12, we can find the per-
formance of the analytical models is similar to fixed stream
configurations. This is because the performance of the seven
programs, such as binomial, changes dramatically with
different stream configurations (see also Figure 3). The
performance of the remaining programs is not sensitive to
the variation of stream configurations. From Figure 15, we
can further see that Liu et al. and Werkhoven et al. deliver
a speedup within a range on 20% to 80%, while the perfor-
mance of our approach is centralized on a range between
80% to 100%. Thus, our approach delivers consistently
better performance compared with the alternative models.

Liu et al. Werkhoven et al. Our Approach
0

0.2

0.4

0.6

0.8

1

%
 to

 th
e 

O
ra

cl
e 

P
er

fo
rm

an
ce

Figure 15. Violin plot showing the speedups per scheme across bench-
marks and datasets. The shape of the violin corresponds to the speedup
distribution to the oracle performance. The thick black line shows where
50% of the data lies.
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Figure 16. Resultant performance with and without label merging.

D. Model Analysis

1) Evaluate the Label Merging Algorithm: To evaluate
our label merging algorithm, we first use the 101 raw labels
to train a predictive model. With the help of the label
merging algorithm, we reduce the number of classes to be
28. Then we use the new labels to train a new predictor and
compare the performance of these two models.

We show the result in Figure 16. We find that with the
labels merge algorithm, the new predictive model performs,
on average, 21% better than the one without label merging.
It indicates that our label merging algorithm can lead to
a better predictive performance by better balance training
samples per stream configuration.

2) Compare to Alternative Learning Techniques: Ta-
ble III shows the average speedup achieved by different
machine learning techniques. For each technique, we follow
the same training methodology and use the same features
and training examples to build a model. These schemes
are implemented using scikit-learn [20] except for the SVM
models which are built upon libSVM as our approach. We
have performed parameter search on the training dataset to
find the best performing model parameters. Specifically, we
vary k between 1 and 10 for KNN models and try different
number of hidden layers and neurons for the ANN model.

Thanks to the high quality features, all models achieve
similar performance (over 1.3x). Our SVM model based
on a quadratic kernel function gives the best overall
performance. This is because the kernel function we used
can model both linear and non-linear relation between



Table III
COMPARE TO ALTERNATIVE LEARNING TECHNIQUES.

Learning techniques Avg. speedup Learning techniques Avg. speedup

Gaussian SVM 1.37 Decision tree 1.39
Backpropagation ANN 1.42 Linear discriminant 1.40
Linear SVM 1.43 Ensemble KNN 1.44
Weighted KNN 1.45 Our approach 1.57

the features and the desired labels; and as a result, it
predicts the best stream configuration more accurate than
other alternative models. It is to note that the performance
of the ANN model can be further improved if there are
more training examples (e.g., through synthetic benchmark
generation [21]) and our approach can be used with an ANN
model without changing the learning process.

VI. RELATED WORK

Our work lies in the interaction of various areas: work
partitioning, stream modeling, and predictive modeling.

Workload Partition. There is an extensive body of research
work in distributing work across heterogeneous processors
to utilize the computation resources to make program run
faster [22], [23]. Prior work in the area typically assumes that
the processor configuration is fixed and rely on the operating
system to schedule parallel tasks across parallel processing
units. Recent studies show that by partitioning the processing
units into groups it is possible to significantly improve
the application performance by overlapping the host-device
communication and computation on coprocessors like Intel
XeonPhi [6], [14]. However, existing approaches typically
rely on manual tuning to find the processor partition and
the best number of streams to run within a partition. As
a result, previous approaches cannot adapt to the change
of program behavior due to the change of program inputs.
As a departure from prior work, this work develops an
automatic approach to dynamically adjust the processor
partition and task-granularity during runtime, considering
the characteristics of applications and input datasets. As a
result, our approach can adapt to the change of program
behavior and runtime inputs.

Multiple Streams Modeling. Gomez-Luna et al. [11]
develop a set of models to estimate the asynchronous
data transfer overhead on different GPU architectures. The
models can be used to estimate the optimal number of
streams to use on a given GPU platform. Werkhoven et
al. [10] present an analytical model to determine when
to apply an overlapping method on GPUs. Liu et al. [12]
also develop an analytical based approach to determine
the optimal number of streams to use on GPUs. However,
none of these approaches considers the processor partition.
As we have shown in Section V-C, ignoring the processor
partitioning parameter can lead to poor performance on Intel

XeonPhi. Furthermore, these hand-crafted models have the
drawback of being not portable across architectures as the
model is tightly coupled to a specific GPU architecture. Our
work advances prior work by employing machine learning
to automatically learn the optimal processor partition and
the number of streams/tasks to use. Since our models are
automatically learned from empirical observations, one can
easily re-learn a model for a new architecture.

Predictive Modeling. Recent studies have shown that ma-
chine learning based predictive modeling is effective in code
optimization [24], [25], tuning compiler heuristics [26]–
[28], parallelism mapping [18], [29]–[34], and task schedul-
ing [35]–[40]. Its great advantage is its ability to adapt to
changing platforms as it has no a prior assumption about
their behavior. The work presented by Wen et al. [41]
employs SVMs to develop a binary classifier to predict that
if a given OpenCL kernel can achieve a high speed up or
not. Our work differs from [41] in that it targets a different
architecture and programming model, and it predicts from a
larger number of configurations instead of making a binary
prediction. We stress that no work so far has used predictive
modeling to model the optimal processor partition and task-
granularity on heterogeneous processors.

VII. CONCLUSION

This paper has presented an automatic approach to exploit
heterogenous streams on heterogenous many-core architec-
tures. Central to our approach is a machine learning based
approach that predicts the optimal processor core partition
and parallel task granularity. The prediction is based on a set
of code and runtime features of the program. Our model is
built and trained off-line and is fully automatic. We evaluate
our approach on a CPU-XeonPhi mixed heterogenous plat-
form using a set of representative benchmarks. Experimental
results show that our approach delivers, on average, a 1.6x
speedup over a single-stream execution. This translates to
94.5% of the performance given by an ideal predictor.
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