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Abstract

Heterogeneous multi-core architectures consisting of CPUs and
GPUs are commonplace in today’s embedded systems. These ar-
chitectures offer potential for energy efficient computing if the ap-
plication task is mapped to the right core. Realizing such potential
is challenging due to the complex and evolving nature of hardware
and applications. This paper presents an automatic approach to map
OPENCL kernels onto heterogeneous multi-cores for a given opti-
mization criterion — whether it is faster runtime, lower energy con-
sumption or a trade-off between them. This is achieved by develop-
ing a machine learning based approach to predict which processor
to use to run the OPENCL kernel and the host program, and at what
frequency the processor should operate. Instead of hand-tuning a
model for each optimization metric, we use machine learning to
develop a unified framework that first automatically learns the op-
timization heuristic for each metric off-line, then uses the learned
knowledge to schedule OPENCL kernels at runtime based on code
and runtime information of the program. We apply our approach
to a set of representative OPENCL benchmarks and evaluate it on
an ARM big. LITTLE mobile platform. Our approach achieves over
93% of the performance delivered by a perfect predictor. We obtain,
on average, 1.2x, 1.6x, and 1.8x improvement respectively for run-
time, energy consumption and the energy delay product when com-
pared to a comparative heterogeneous-aware OPENCL task map-
ping scheme.

Keywords Heterogeneous Multi-cores, Predictive Modeling, En-
ergy Efficiency, OpenCL

1. Introduction

Embedded systems with heterogeneous multi-cores are common-
place. These systems offer the potential of energy efficient comput-
ing via diverse processing units specially tuned for a certain class
of workloads and for power or performance. While promising, to
unlock the potential of such systems, software must adapt to the
variety of processors, knowing what type of processors to use and
at what frequency the processor should operate.

OPENCL has emerged as a standard programming model for
heterogeneous systems. It allows the same code to be executed
across a variety of processors including CPUs, GPUs and DSPs.
While OPENCL provides functional portability, its performance of-
ten varies across different processing units [13, 19, 26]. Therefore,
there is a need to determine where and how to map a OPENCL task
to best utilize the underlying heterogeneous hardware resources.

In this paper, we tackle the issue of OPENCL task mapping
across heterogeneous CPUs and GPUs for multiple optimization
criteria. Although task scheduling is a heavily studied area [3, 11,
34, 35], heterogeneous task mapping is made more complex by
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the different runtime and energy characteristics an OPENCL kernel
will experience on different processing units [9, 28, 30]. While
manually task mapping may be possible in certain domains [2,
4], it is not the general case as the decision will depend on: the
application itself, the program input, underlying hardware, and
optimization criteria. Given that embedded systems are becoming
increasingly diverse with ever-changing hardware and software,
finding the right mapping for a single application may have to
be repeated many times throughout its lifetime, hence, making
automatic approaches attractive.

This paper presents a novel compiler-based approach to map
and schedule OPENCL tasks across embedded heterogeneous com-
puting units. We do so by employing machine learning techniques
to automatically construct predictors to determine at runtime the
optimal processor configuration — which processing units and clock
frequencies to use to run the given OPENCL driver program and
kernel function, taking into consideration the optimization criterion
— whether it is faster response time, lower energy consumption or
a trade-off between them. Our predictors are first trained off-line.
Then, using code and data features extracted from the compiler in-
termediate representations (IR), the models predict the optimal pro-
cessor configuration for a new, unseen program, depending on what
we want to optimize for. We show that our unified machine learn-
ing based framework can automatically derive high-quality opti-
mization heuristics across different optimization metrics, despite
the optimal configurations changing from one metric to the other.
Our approach avoids the pitfalls of using a hard-wired heuristics
that require human modification every time the optimization crite-
rion or hardware changes.

We apply our approach to 15 OPENCL benchmarks and eval-
uate them on a representative big. LITTLE mobile platform, using
three metrics: runtime, energy consumption and the energy delay
product. We compare it to a comparative machine learning based
mapping scheme [13]. We show that our approach delivers, on av-
erage, over 1.2x improvement across all benchmarks.

This paper makes the following two main contributions:

e We develop a unified machine learning based framework for
mapping OPENCL tasks on embedded heterogeneous multi-
core platforms across optimization criteria;

e We show that our automatic approach constantly outperforms
comparative work across all evaluation metrics.

2. Related Work

Our work lies at the intersection of numerous areas: GPU perfor-
mance optimization, GPU task scheduling, predictive modeling and
energy optimization.

GPU Performance Optimization There is an extensive body of
work looking at GPU performance optimization through the use



of compilation and runtime techniques [22, 31, 38]. Most prior
work in the field uses analytical models to determine optimization
strategies. contrast, our work employs machine learning to auto-
matically construct models for different optimization goals. Prior
studies show that portable mapping techniques are important, pro-
gram performance depends on the underlying hardware [19, 26].
Our work is among attempts to create portable mapping techniques.

GPU Task Scheduling Numerous approaches have been pro-
posed to map OPENCL or CUDA kernels on heterogeneous com-
puting devices. Some of the prior work uses profile runs to partition
work across the CPU and the GPU [1, 13, 20, 23]. In contrast to
these works, our approach does not rely on profiling information,
therefore, has less runtime overhead. Other work considers code
and data transformations for CPU/GPU architectures [21, 27], GPU
task pre-emption [6], and multi-task scheduling [10, 14-16, 22, 43].
These prior works primarily target performance optimization, while
this work aims to build a portable approach for arbitrary optimiza-
tion goals. Moreover, existing approaches on multi-task scheduling
are orthogonal to our work.

Predictive Modeling Machine learning based predictive model-
ing is emerging as a powerful technique for optimizing parallel pro-
grams [28, 29, 33, 37, 39-41]. Its great advantage is its ability to
adapt to changing platforms as it has no a prior assumptions about
their behavior. The work presented by Grewe et al. is the nearest
work [13, 42], which builds a decision tree model to predict where
(CPU or GPU) to run a given OPENCL kernel. Our approach dif-
fers from this work in two aspects. Firstly, our approach can adapt
to different optimization goals while [13] only targets runtime. Sec-
ondly, our approach considers the clock frequency of the processors
while [13] does not.

Energy Optimization How to effectively exploit heterogeneous
architectures for energy efficient computing is a heavily studied
area. Some of the recent examples in the area include: how to dis-
tribute workloads across CPUs and GPUs [25] and MPSoCs [4],
power modeling for GPGPUs [24], and energy aware iterative com-
pilation [7, 12] etc. Unlike these approaches which all use analytic
models or hard-wired heuristics to perform optimization for a spe-
cific goal, we develop a portable method that can automatically re-
target for any optimization metric. Our approach shares the same
spirit as the work presented by Ren et al. [32], we both use machine
learning to build predictive models for energy optimization. How-
ever, we target optimizing OPENCL programs on heterogeneous
systems, while [32] focuses on scheduling mobile web browsing
processes on CPUs.

3. Background
3.1 Problem Definition

Scope This work aims to develop a runtime system that can adapt
to arbitrary optimization goals for OPENCL kernel mapping. An
OPENCL program typically consists of two parts, a kernel program
(which might contain several OPENCL kernel functions) to run
on an OPENCL-compatible device (in our case a CPU or GPU),
and a driver (or host) program to run on the general purpose CPU
to offload the kernel computation. OPENCL kernel functions are
compiled at runtime on the host CPU and sent to execute on the
compatible device. This work is concerned with determining the
best processor configuration — that is — which processor to run the
driver program and the kernel, and at what clock frequency the
processing units should operate.

Notation Our configuration notation is HostDev.y/r, freq —
KernelDev.y, 1, where b and L stands for big and little CPU/GPU
respectively. For example, notation, CPUp goonrn: — GPUs,

means running the host program on the little CPU at 800Mhz and
the kernel on the big GPU. It is to note that we found that using the
default frequency to run the OPENCL kernel gives the best perfor-
mance, so we do not configure the clock frequency for running the
kernel.

Optimization Metrics Unlike prior work [13], we do not just
develop a method to optimize runtime. Instead, we want to develop
a methodology that can be used for any optimization goal. For
the purpose of evaluation, we target three lower is better metrics:
(a) runtime, which aims to execute the kernel function as fast
as possible; (b) energy consumption, which aims to use as little
energy as possible; and (c) energy delay product (EDP), calculated
as energy X runtime, which aims to find a balance between both
energy consumption and performance.

Hardware platform Our work targets the ARM big.LITTLE ar-
chitecture. These platforms couple a energy-tuned processor (LIT-
TLE) with a faster and more power-hungry processor (big), some
also come with a GPU which can be used for general purpose com-
puting. The uniqueness of each processing unit allows for much
more energy efficient computing when utilized to its full poten-
tial. Our work is evaluated on an Odroid-Xu3 embedded develop-
ment board. We chose this platform as it is: representative of ARM
big. LITTLE mobile architectures, provides us with an OPENCL
implementation for both the CPU and GPU, and allows us to ex-
tract real-time energy readings using the on-board energy sensors.
The architecture used in the Odroid system is used in multiple mo-
bile devices such as the Samsung Galaxy S5.

3.2 Motivating Example

Consider scheduling four OPENCL kernels from the Rodinia
benchmark suite on an ARM big.LITTLE platform with hetero-
geneous processing units. These kernels can be run on either of the
heterogeneous CPU clusters, a Cortex-A15 processor (big) and a
Cortex-A7 processor (little), or the Mali-T628 GPU. The OPENCL
libraries recognise the Mali-T628 as two separate GPUs, one con-
taining 4 cores (big), the other containing two (little).

Table 1 lists the best processor configurations for each of the
three metrics considered in this work. To obtain the optimum pro-
cessor configurations we performed an exhaustive search across all
configurations, and monitored the energy consumption and runtime
of each. We then calculated the processor configuration which pro-
duced the minimum value (as each metric is lower-is-better) for
each metric and kernel combination.

Figure 1 compares the potential improvement of each kernel
and metric over a baseline that runs all kernels on the big GPU,
CPUB,2.06n> — GPU,. For runtime, the baseline performs well
for BFS_1 and Nearest Neighbor, but a speed-up of 51% and
80% can be achieved for find_index and lud_diagonal respec-
tively when the optimum configuration is used. Using the big GPU
leads to significant energy consumption. For this metric, the best
configuration gives over 49% (up to 95%) reduction for each of
the four benchmarks. Finally, for EDP, the best configuration gives
over 46% (up to 98%) reduction for those kernels. Clearly, there
is significant room for improvement over simply running the ker-
nel on the GPU, and the best processor configuration could change
from one optimizing metric to another.

Figure 2 normalizes the best available performance of each met-
ric for find_index, lud_diagonal, and Nearest Neighbor to
the performance achieved by using the best configuration found for
BFS_1, when optimizing for EDP (BFS_1-EDP). It shows that the
best configuration also changes from one kernel to another; in other
words no one configuration can be used to optimize for all kernels
and all metrics. Overall, the best configuration for BFS_1-EDP pro-
vides a near optimal choice across all metrics for BFS_1. Nearest



Table 1: The best configuration which optimizes for each of the metrics: Energy Consumption, Runtime, and EDP.

Kernel Energy Consumption

Runtime

EDP

BFS_1 CPUL s00mhz — GPUp
find_index CPUL goomnz — CPU;
Nearest Neighbor  CPUy 1.0ch: — GPU;

lud_diagonal CPUp soomh — CPU;

CPUL 1.46h= — GPU,
CPUB 2.06h — CPUy
CPUp,2.06hz — GPUy
CPUg,2.06hz — CPUy

CPUL 1.26h= — GPU,
CPUB 1.6ghz — CPUy
CPUL 1.46h= — GPU,
CPUL,1.26n> — CPU,
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Figure 1: The percentage decrease (higher is better) of different
metrics achieved when choosing the optimum configuration. The
baseline is offloading each kernel to the big GPU, CPUp 2.0Gh= —
GPU,.
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Figure 2: Available room for improvement when using the op-
timum configuration found for BFS_1 when optimizing for EDP,
CPUL 1.26h: — GPUy. This diagram shows that the best config-
uration varies across metrics and programs.

Neighbor also achieves near optimum results across all metrics
for this configuration; although, a improvement of 13%, 7%, and
9% can still be achieved for runtime, energy consumption and EDP
respectively. Kernels find_index and 1ud_diagonal achieve far
from optimal results under this configuration. The best configura-
tion is able to give an improvement between 51% and 92% (av-
erage of 71%) for all metrics. Therefore, finding an optimal con-
figuration for one kernel and applying it to all others is likely to
miss significant optimization opportunities. This example demon-
strates that choosing the right processor setting has a significant
impact on the resultant performance and energy consumption, and
the optimal configuration must be determined on a per-kernel and
per-optimization-goal basis.

Attempting to find the optimum configuration through means of
an exhaustive search would be ineffective, the overhead involved
would be far bigger then the potential benefits. Classical hand-
written heuristics are not ideal either, as they are not only com-
plex to develop, but are likely to fail due to the variety of programs
and evolving OPENCL devices. An alternate approach, and the one
we chose to use, is to use machine learning to automatically con-
struct predictive models for determining processor configurations,
providing minimal runtime and development overhead.

Figure 4: Our model, comprised of 4 SVMs. The first (Initial) pre-
dicts which type of device to run a kernel. The result then defines
which branch we take through our model. Each branch predicts the
system configuration for the given kernel. See Section 5.1

4. Overall Methodology

Our approach takes a new, unseen OPENCL kernel function and is
able to predict the optimum, or near optimum, processor configu-
ration. An overview of our approach can be seen in Figure 3, and is
described in more detail in Section 5.1.

When an OPENCL kernel is launched, our approach will collect
a set of information or features to capture the characteristics of the
kernel. As OPENCL is just-in-time compiled, the set of feature
values collected by our approach can reflect the program input
that is available at runtime. Feature extraction is performed on the
LLVM intermediate represenations (IR); we only use code features
and do not profile the program. Table 2 presents a full list of all our
considered features. After collecting the feature values, a machine
learning based predictor (that is trained offline) takes in the feature
values and predicts which processor configuration should be used
to execute the OPENCL kernel. This prediction includes the choice
of host processor and its configuration in conjunction with the
choice of accelerator. Finally, when the OPENCL kernel is ready
to be offloaded to an accelerator we configure the host processor
and offload the kernel to the predicted processor.

5. Predictive Modelling

Our model for predicting the best processor configuration is com-
prised of a set of Support Vector Machines (SVMs) arranged a hi-
erarchically, show in Figure 4. Varying degrees of the polynomial
kernel is used for each of our SVMs. We have evaluated a number of
alternate modelling techniques, including regression, Naive Bayes,
K-Nearest neighbour, decision trees, and artificial neural networks
(see also Section 8.2). We chose SVM because it gives the best per-
formance and can model both linear and non-linear problems. The
input to our model is a set of features extracted from the target
OPENCL kernel function. The output of our model is a label that
indicates the optimal processor configuration to the host program
and the OPENCL kernel, including the frequency of the host pro-
cessing unit.

Building and using such a model follows the 3-step process for
supervised machine learning: (i) generate training data (ii) train a
predictive model (iii) use the predictor, described as follows.



Table 2: Raw features we considered using in this work.

Property Feature

Description

avg-BB_preds
avg_BB_succ
num-edges
num_BB
avg_phi_args
BB_with_0_phi
num_instr
num_cond_br
num_uncond_br
num_br
num_int_bin_ops
num_bin_ops
num_unary_instr

program structure

types of computation

amount of computation num-comp
types of memory access num-nen
P "y num_localmem
num_load
amount of memory accesses
num_store

num_coalesced
avg-work_size
transfer_size
num_float_inst

layout of memory accesses
data layout
data types used

Average # of predecessors to a basic block
Average # of successors to a basic blocks
# of edges in the Control Flow Graph (CFG)
# of basic blocks

Average # arguments to a phi nodes

# basic blocks with 0 phi nodes

# instructions

# conditional branch instructions

# unconditional branch instructions

# branch instructions

# binary operations with ints

# binary operations

# unary instructions

# compute operations

# accesses to global memory

# accesses to local memory

# load instructions

# store instructions

# coalesced memory accesses

Average work size of kernels in a benchmark
# bytes transferred to the accelerator

# instructions which use floats

Table 3: Combined features used in this work.

Property Feature

Calculated

Ratio of memory access per work size

Ratio of computation to memory transfer
Ratio of memory access to computation
Percentage of coalesced memory access
Percentage or memory accesses per instruction
Ratio of transfer size to work size

mem_by_work
comm-comp_ratio
comp-mem_ratio
perc_coal_mem_acc
meme_acc_per_instr
transfer-work_ratio

(num_localmem + num_mem) * avg_work_size
transfer_size | (num_mem + num_comp)
num-comp | num-_mem

num_coalesced | num_mem

(num_load + num _store) | num_instr
transfer_size | avg_-work_size

Profiling
o EE a3
optimal proc. config| S 5 NG
Training Feature g 5
kernels —{B | Predictive Model
feature'values

Figure 5: The training process. Our unified machine learning
framework uses the same procedure to train a hierarchical predic-
tive model for each optimization goal.

5.1 Model Description

Figure 4 gives an overview of our predictive model. We chose a
hierarchical layout as it yields the best results for our training data.
In total we use 4 SVMs in our predictive model, and each has been
given a name to allow for clear references. Below we will give a
brief description of each SVM in our model.

Initial The first SVM in our model, all data which enters our model
passes this SVM first. /nitial is used to place each kernel into one
of two groups: accelerate-on-host and accelerate-off-host, which
will be passed to the Accelerator and Host Config and Accelerator
Config SVMs respectively. Each group requires a different approach
to predict the optimum processor configuration for a kernel, hence
our use of multiple branches.

Accelerator and Host Config 'The OPENCL API for our system
recognises both CPUs as one processor, this resulted in us being
unable to separate the host and kernel processes. As a result, when
a kernel runs on the host it must adopt the same processor set-up
as its host process. Accelerator and Host Config is able to predict
the optimum processor configuration while taking the previously
mentioned restriction into account. This is the only SVM in this

branch of our predictive model, producing the final System Config
output for this branch.

Accelerator Config  Another branch of our predictive model starts
here. Contrary to the previous branch, Accelerator Config predicts
the optimum accelerator configuration only, the optimum host con-
figuration will be predicted by Host Config, which is the next SVM
in this branch.

Host Config  As the final SVM in this branch, Host Config predicts
the best host configuration. The output of this SVM and Accelerator
Config is then combined to produce the final System Config output
for this branch of the model.

5.2 Training the Predictor

Our method for training the predictive models is shown in Figure 5.
To train a new predictor we first need to find the best processor
configuration for each of our training OPENCL kernels, and extract
features. We then use this set of data and classification labels to
train our predictor model.

Generating Training Data We use leave-one-out-cross valida-
tion for training. This standard machine learning technique works
by selecting one benchmark for testing and using the remaining
ones for training. To generate the training data for our model we
used two benchmark suites: Rodinia [5] and Parboil [36]. In total,
we used 32 OPENCL kernels from 15 benchmarks. These bench-
marks cover a wide variety of domains including: image process-
ing, data mining, pattern recognition, physics simulations, and lin-
ear algebra. We execute each kernel and benchmark a number of
times until the gap of the upper and lower confidence bounds is
smaller than 5% under a 95% confidence interval setting. To reduce
noise in our performance and energy consumption readings we gen-



erate our training data on a unloaded machine, this should not be
a problem as we expect model training to be a one-off cost which
is carried out at the factory, that is, before a process architecture is
released for sale. However, if the hardware configuration changes,
i.e. one or more processors are added or removed, new training
data will need to generated and the model re-trained. The set of
frequencies to be used for generating the training data is decided
beforehand. For our hardware platform we chose to use steps of
200Mhz for each processor configuration, e.g. 200Mhz, 400Mhz,
up to 2.0Ghz. We exhaustively execute each OPENCL kernel across
all of our considered processor configurations, and record the per-
formance and energy consumption of each. Next, we record the best
performing processor configuration for each OPENCL kernel and
optimization metric, keeping a label of each. Finally, we extract the
values of our selected set of features from each OPENCL kernel;
our choice of features is described in more detail in Section 5.3.

Building The Model The processor configuration labels, along
with their corresponding feature set, are passed to our supervised
learning algorithm. The learning algorithm tries to find a correla-
tion between the feature values and optimal processor configuration
labels. The output of our learning algorithm is a version of our SVM
based model. Because we target three optimization metrics in this
paper, we have constructed three predictive models - one for each
of our optimization metrics. In our case, the overall training process
(which is dominated by training data generation) takes less than a
week on a single machine.

Total Training Time The total training time of our model is com-
prised of two parts: gathering the training data, and then building
the model. Gathering the training data consumes most of the total
training time, in this paper it took around 3 days. In comparison
actually building the model took a negligible amount of time, less
than 1 minute.

5.3 Features

Our predictive models are based exclusively on code features of
the target OPENCL kernel. The features are extracted using a pass
working on the LLVM 1IR. Since our goal is to develop a portable,
architecture-independent approach, we do not use any hardware-
specific features.

We considered a total of 22 candidate raw features (Table 2)
in this work. Some features were chosen from our intuition based
on factors that can affect kernel mapping e.g. transfer_size and
num_float_inst, other features were chosen based on previous
work [13, 26]. Altogether, our candidate features should be able
to represent the intrinsic parts of each OPENCL kernel.

Feature Selection 1In order to build an accurate predictive model
through supervised learning the training sample size typically
needs to be at least one order of magnitude greater than the number
of features. We currently have 32 OPENCL kernels and 22 fea-
tures, so we would like to reduce the number of features in use.
Our process for feature selection is fully automatic, described as
follows. Initially, we reduced our feature count by combining sev-
eral features to form a set of combined normalized features, shown
in Table 3, which are able to carry more information than their
parts. Next, we removed any features which carried very similar
information as our combined features or their parts, making them
redundant. To find which features are closely correlated we con-
structed a correlation coefficient matrix, which is able to quantify
the correlation between any two features. We used Pearson product-
moment correlation coefficient. As input, two features are given, a
value between +1 and -1 is returned. The closer a coefficient is to
+/-1, the stronger the correlation between the two input features.
We removed any feature which had a correlation coefficient (taking
the absolute value) greater than 0.75. Table 4 shows all the features

Table 4: Correlations of removed features to the kept features. All
correlation values are absolute values.

Kept Feature  Removed Feature  Correlation
num_BB 0.99
num_br 0.99
T BB_with_0_phi 0.98
num_cond_-br 0.95
num_uncond_br 0.94
avg_phi_args 0.78
avg_BB_preds  avg_BB_succ 1.00
num_instr num_unary_inst 0.93
num_store num_int_bin_ops 0.85
num-comp num_float_inst 0.74

Table 5: Features which remained after feature selection.

mem_by_work
comp-mem_ratio
transfer-work_ratio

comm-comp_ratio
perc_coal_mem_acc
num-edges

mem_acc_per_instr
avg_BB_preds
transfer_size

which were removed due to a high correlation value with another
feature. For example, we can see that num_BB is highly correlated
to num_edges, in this case we chose to remove num_BB from our
feature collection. Our feature selection process results in just 9
features remaining for use, these are listed in Table 5. It is to note
that our approach for feature selection is automatic. This means the
approach can be applied to other sets of candidate features.

Feature Scaling Before the chosen features can be given to our
predictive model for training they need to be scaled to a common
range. We scaled each of our features between the range of 0 and
1. To scale features extracted from a new kernel during runtime
deployment we record the maximum and minimum value of each
feature before scaling.

5.4 Runtime Deployment

Once we have built and trained our predicted models as described
above, we can use them to quickly and efficiently predict the best
processor configuration for any new, unseen OPENCL kernel.

We implemented our approach as an OpenCL library extension,
building on standard OPENCL APIs. The kernel code will be trans-
lated into LLVM IR when the OPENCL API c1BuildProgram is
invoked by the host code. Once the kernel function is launched
through clEnqueueNDRangeKernel, our extension extracts and
scales all features needed for the predictive model. Given an op-
timization goal our extension will choose the correct predictive
model to predict the optimal processor configuration. This predic-
tion is then passed to the runtime library to configure the hardware.
It is to note that we use the proprietary OPENCL compiler to com-
pile the kernel for the target hardware. The overhead of extracting
features, making predictions, and processor configuration is small,
which is included in our experimental results.

6. Experimental Setup
6.1 Platform and Benchmarks

Hardware Our hardware evaluation platform is an Odroid XU3
big. LITTLE embedded development board. The board has 2 GB
LPDDR3 RAM and 64 GB eMMC storage. Table 6 gives detailed
information of the hardware platform. We chose this hardware
platform as it is representative of the big.LITTLE architecture,
provides us with OPENCL implementations for the CPU and GPU,
and allows us to extract real-time energy readings. Our reasons for
choosing this platform are given in Section 3.

Systems Software Our platform runs Ubuntu 14.04 Linux with a
Heterogeneous Multi-Processing (HMP) scheduler. The scheduler



Table 6: Hardware platform

big CPU LITTLECPU  GPU
Model Cortex-Al5 Cortex-A7 Mali-T628
Core Clock 2.0 GHz 1.4 GHz 533 MHz
Core Count 4 4 6

allows us to use the heterogeneous cores at the same time. Our host
compiler is gcc v5.4.0, with “-O3” as the compiler option. To use
OPENCL on the GPU we use the ARM Mali OPENCL SDK. To
use OPENCL on the CPU we use PoCL [18], an OPENCL imple-
mentation for CPUs that is based on LLVM. The PoCL compiler
automatically applies a set of LLVM-based code transformations
to optimize the GPU-tuned OPENCL kernel function for the host
CPU.

Benchmarks We used a total of 32 OPENCL kernels from 15
benchmarks. From the Rodinia benchmark suite v2.0.1, we used
22 kernels from 9 benchmarks, and from the Parboil OPENCL
benchmark suite, we used 10 kernels from 6 benchmarks. Some
benchmarks had to be left out as they were either not compatible
with our hardware, or not compatible with our OPENCL compilers.

6.2 Evaluation Methodology

Model Evaluation We use leave-one-out cross-validation to eval-
uate our machine learning model. This means we train our model
on 14 benchmarks and apply it to the testing program. We repeat
this process 15 times, one for each of the 15 benchmarks. It is a
standard evaluation methodology, providing an estimate of the gen-
eralization ability of a machine-learning model in predicting un-
seen data.

Comparisons We compare our approach to another machine
learning based approach which provides a portable mapping of
OPENCL kernels for heterogeneous systems [13], referred to as
PKM hereafter. It is currently the closest work to our own. PKM uses
a decision tree to predict whether a given OPENCL program should
run on the GPU or the CPU host to achieve the best performance
speed-up. We also compare our work to a perfect predictor, referred
to as an Oracle hereafter. The Oracle predictor, named after its
ability to make prophetic predictions, is able to predict the best
possible configuration for all kernels and optimization targets.

Performance Report We profiled each kernel under a processor
configuration multiple times and report the geometric mean of each
metric. To determine how many runs are needed, we calculated
the confidence range using a 95% confidence interval and make
sure that the difference between the upper and lower confidence
bounds is smaller than 5%. To eliminate the impact of outliers, we
also report harmonic means and median values across kernels and
benchmarks. We used the on board energy sensors to measure the
entire system. These sensors have been checked against external
power measurement instruments and proven to be accurate [17]. To
measure the energy consumption, we have developed a lightweight
runtime to take readings from the on-board energy sensors at a fre-
quency of 10 samples per second. We then matched the readings
against the timestamps of the kernel to calculate the energy con-
sumption.

7. Experimental Results

In this section, we compare our work against PKM, showing how
our work compares to comparative work. Next, we evaluate our
approach against an ideal predictor, an Oracle, showing that our
approach can deliver over 93% of the Oracle’s optimizing capa-
bility. Finally, we investigate the impact of different input sizes on
our model.

7.1 Overall Performance

We compare our approach against PKM on runtime (Figure 6),
energy consumption (Figure 7), and EDP (Figure 8). The baseline
is to offload all kernels on to the big GPU, C PUg 2.06h: — GPUs.
First, we deeply analyse our results on a per-kernel basis, then we
summarize these results on a per-benchmark basis.

Runtime Figure 6 shows the performance achieved by each
method when optimizing for runtime, i.e. when a fast response time
is the priority. For this metric, the default method of offloading all
kernels on to the big GPU already provides near optimum results
for most kernels. This is not a surprising result as the OPENCL
benchmarks have been heavily tuned for runtime on GPUs. For this
metric, PKM is able to select the correct configuration for most of the
kernels, but can lead to significant slowdowns for some. For exam-
ple, it gives 1.6x and 5x slowdown for srad.k1 and hotspot.k1
respectively, by predicting the wrong processor to use. Our ap-
proach, by contrast, never gives any slow-down in execution time.
In fact, by predicting to use the CPU, our approach is able to deliver
over 15% (up to 80%) speed-up for some of the kernels which do
not benefit from the GPU execution. Overall, our approach gives
an average speed-up of 9.4%.

Energy Consumption Figure 7 compares our approach against
PXM when optimizing for energy consumption, i.e. when trying to
preserve battery life is the main priority. Both methods are able to
reduce energy consumption for more than half of the kernels. For
this metric, using the power-hungry GPU is not always desired.
For some of the kernels, PKM delivers rather poor energy efficiency
performance, consuming up to 8x more energy, because it maps the
kernel to run on a device with a much longer execution time than
the big GPU. Comparing to PKM, while our approach also gives
the wrong prediction for some of the kernels, e.g. mri-q.k2 and
histo.k3, the performance degradation is modest (11% and 2%
respectively). We believe the prediction accuracy of our model can
be improved by using more examples during training. On average,
PKM achieves a 28% improvement for this metric, which is again
outperformed by our approach that gives a 45% improvement. This
means that our approach outperforms PKM by a factor of 1.6x when
optimizing for energy consumption.

EDP Figure 8 shows the performance achieved by each method
when optimizing for EDP, i.e. trying to reduce energy consumption
without significantly increasing execution time. Both methods are
able to achieve some performance increase over the baseline for
EDP. While both approaches are not able to achieve a performance
increase every time, our approach limits its performance degrada-
tion to -12%, whereas PKM reaches -9.7x for cfd.k5 and -8.1x for
stencil.k1. This huge decrease in EDP can be explained by PKM
predicting these benchmarks to be offloaded to the CPU incorrectly,
which gives a significantly longer execution time over the baseline.
Overall, PKM fails to deliver any improved performance for EDP
(-19%). Our approach, however, is able to give an average perfor-
mance increase of 32% (up to 96%), with a significant improve-
ment for the majority of benchmarks. PKM is only able to slightly
outperform our approach in one instance for EDP optimization; it
is caused by our approach incorrectly predicting the host device.

7.2 Comparing with the Oracle

Figures 6 - 8 also compare our approach against the performance
achieved by using an ideal predictor (Oracle) for all three evalu-
ation metrics. This comparison shows how close our approach is
to the theoretically perfect solution. Our approach is able to ei-
ther match, or come very close to match, with the Oracle’s perfor-
mance in most cases. Overall, we are able to achieve 93.9%, 96.8%,
and 96.1% of the Oracle’s optimizing capability for performance,



[ PKM I Our Approach Il Oracle

<100 : ,
> Rodinia ! Parboil \ T
S s80f ! ! i
-] B | | 4
o | ) | i
G 60 ' .
2 T | | .
S 40t . \ il
6 L | | ]
3 [ .
2 20 ' | -
5 r | | 4
Q
= ! )
5 0 = | LJTH
3 3 160%) -500% -80% i -90% X |
5_20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [l 1 1 1
£
BN N e A A N I N e e L N A A S LA I N N LA N L AR R AN SN LA AN SR
LR P PR XSTRELRLRERE LRSS P F IO W S
VU878 (RS & S FFFLFSFLSLSI S AR
CFE $ O MY o
© THE N
<R X

Figure 6: Optimization for runtime for each kernel. Our approach outperforms PXM and does not slowdown any programs. We achieve, on

average, 93.9% of the Oracle performance for this metric.
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Figure 7: Optimizing for energy consumption for each kernel. Our approach outperforms PKM and only uses more energy in one kernel
compared to the baseline. We achieve, on average, 96.8% of the Oracle performance for this metric.
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Figure 8: Optimization for EDP for each kernel. Our approach outperforms PKM and only leads to a small increase in EDP when compared
to the baseline for a few kernels. We achieve, on average, 96.1% of the Oracle performance for this metric.

energy consumption, and EDP respectively. We could further im-
prove the performance of our predictive model by increasing the ac-
curacy of host processor configuration predictions. We suggest that
this would be possible through the introduction of more/diftferent
features which are capable of characterizing the host program bet-
ter than we are currently able. Our model could also be improved
through the inclusion of more OPENCL kernels to allow us to bet-
ter train our models. There could be cases where a model cannot be

trained because of a lack of data, this can be solved by including
more, and a wider range, of kernels [8].

7.3 Improvement Per Benchmark

Figures 9 to 11 compare our performance improvement on a per-
benchmark basis against PKM and the Oracle predictor. Similar to
comparisons on a per-kernel basis we are able to consistently out-
perform PKM while achieving close to the Oracle’s performance.
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Figure 9: Optimization for runtime for each benchmark. Our ap-
proach outperforms PKM and does not slowdown any programs. We
achieve, on average, 92.6% of the Oracle performance for this
metric.
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Figure 10: Optimizing for energy consumption for each bench-
mark. Our approach outperforms PKM and only one benchmark con-
sumes more energy compared to the baseline. We achieve, on aver-
age, 91.4% of the Oracle performance for this metric.

100 1 PKM I Our Approach Il Oracle

80l Rodinia !
60} :
40+ '
20} 5

Parboil !

Improvement over
big-GPU only %

-5025% 373%| | -20%| ||-811% %

PSS

> . QO &
SRSE LRSS LE S L OO Q.00
p ¢ N qﬁ&e@\é\‘\&@v\\\(’ ©
9

Figure 11: Optimization for EDP for each benchmark. Our ap-
proach outperforms PKM and only leads to a small increase in EDP
when compared to the baseline for a few benchmarks. We achieve,
on average, 84.5% of the Oracle performance for this metric.

We achieve 92.6%, 91.4%, and 84.5% of the Oracle’s optimizing
capability for performance, energy consumption, and EDP respec-
tively. Comparing on a per-benchmark basis shows our model’s ca-
pability to achieve high levels of the Oracle’s performance not
only for each kernel but for the whole benchmark, i.e. while taking
every kernel execution into account.

7.4 Prediction Accuracy

Our predictive model is comprised of 4 SVMs organized in a hier-
archical structure (Figure 5, Section 5.1). Each SVM is trained sep-
arately on the subset of data which is relevant to it, i.e. SVM Accel-
erator Config is only trained on the kernels which run best on the
accelerator, whereas [Initial is trained on all kernels. Overall, our
predictive model achieves a high accuracy. The predictive models
for performance and energy consumption are able to achieve 100%
prediction accuracy. Any reduction in performance when compared
to the Oracle are due to assumptions about the Host Device’s fre-
quency, that is, some frequencies of the same host are considered
as one to help train our model, e.g. kernels with optimum configu-
rations of CPUL 1.2¢h: — CPUy and CPUL 1.4Gh. — C PUy, are
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Figure 12: The number of kernels which benefit from each of
the processor configurations listed in Table 7. These histogram
diagrams show that the optimal processor configuration depends
on the optimization goal.

all considered as C'PUy, 1 ach> — C PUp. The predictive model for
EDP was able to achieve a correct match for 30 of our 32 kernels,
achieving a prediction accuracy of 93.6%.

For EDP Inital, Accelerator and Host Config, and Accelerator
Config SVMs all achieve 100% accuracy. Only the final SVM, Host
Config, is unable to achieve 100% accuracy, although, at this point
in our model an incorrect prediction does not yield catastrophic
results. Both lud.k3 and histo.k3 achieve their best performance
when hosted by the big CPU, but both are predicted to be hosted
by the little CPU. We speculate that this difficultly to accurately
predict the host comes as a result of our compact set of features
(due to the small number of training programs). However, these
features are able to represent the intrinsic parts of each kernel,
so are able to accurately predict the best device to execute each
kernel. Beyond our feature transfer_size, little information is given
to the SVM to characterize how the host program of each kernel will
perform. Including more features, perhaps just to this final model,
which are able to characterize how the host program performs is
likely to solve this issue.

7.5 Optimal Processor Configurations

Figure 12 shows the number of kernels which perform best on
each of the processor configurations we found useful in this work.
Table 7 shows how each Config-Num corresponds to a processor
configuration, any configuration not included in this table never
yielded an optimum result when optimizing any of our kernels for
any of our metrics.

It can be observed that there is not a singular configura-
tion which gives an optimum result over many kernels across
performance, energy consumption and EDP. For example, C-20
(CPUB,2.06hz — GPUy) is an optimum configuration for 11 of
our 32 kernels when optimizing for performance. However, if we



Table 7: Useful processor configurations in this work.

Config-Num  Configuration

C-1 CPUB, 400Mmhz — GPUy
C-2 CPUB,1.26h> — GPU,
C-3 CPUB,1.4gh> — GPUy
C-4 CPUg,1.6agh- — GPUy
C-5 CPUB,1.86hz — GPUy
C-6 CPUB,2.OGh,z — GPU,
C-7 CPUg,1.8agh- — GPU;
C-8 CPUg 2.0ah: — GPU;
Cc-9 CPUL,4OOMhz — GPU,
C-11 CPUL soomhz — GPUy
C-12 CPULJ,QGhZ — GPU,
C-13 CPUL,1.26hz — GPUy
C-14 CPUL,1.4Gh= — GPU,
C-16 CPULYLQG)LZ — GPU,;
C-17 CPUL 1.46gh- — GPU
C-18 CPUg,1.06h: — CPUy
C-19 CPUB,1.6ghz — CPUy
C-20 CPUB,2.06hz — CPUy
C-21 CPUL,SOOMhz — CPU,;
C-22 CPULJ,OGhz — CPU;
C-23 CPUL,1.26h= — CPU;
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Figure 13: Optimization for EDP. Performance of our model com-
pared to the Oracle when different inputs are considered. Bench-
marks names have either -inl or -in2 appended to denote the differ-
ent input sizes.

used C-20 to optimize for energy consumption or EDP we would
only achieve an optimum result for 4 and 3 kernels, respectively.
Each configuration which performs well for one optimization goal
does not perform well for the others. We can also see that the best
number of kernels a configuration can optimize for at once is 11
(34%), and that there is a wide range of configurations which give
optimizing performance for each metric. This shows the need for
an approach that is able to spot the subtle differences in each kernel
to optimize correctly.

7.6 Varying Input Sizes

Figure 13 shows how our model performs when we consider differ-
ent inputs. Only some of the benchmarks provided us with methods
to change their input. We have presented these results on a per-
benchmark basis for EDP. However, the results per-kernel, and for
each metric are very similar.

It can be observed that our approach performs well, even when
optimizing the same benchmark with different inputs. In fact, for
EDP, our model never gives a slowdown. Overall, we achieve 90%
of the Oracle performance. Our approach is successful when input
sizes differ as a benchmark’s input size will alter the execution of
a kernel, thus, changing some features. Our model will treat this as
a new, unseen kernel.

8. Model Analysis

In this section we analyse the overall effectiveness of our model.
First, we analyse the importance of each of our chosen features for
each of our evaluation metrics. We then compare our model against
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Figure 14: A Hinton diagram showing how each selected feature is
likely to impact the performance for each model. Here, the larger
the box, the more important a feature is.

other widely used machine learning classification techniques. Fi-
nally, we analyse the training and deployment overhead of using
our approach.

8.1 Feature Importance

Figure 14 shows a Hinton diagram illustrating the importance of
our features. The impact each feature has on each of our predictive
models, for performance, energy consumption and EDP, can easily
be seen. Here, the larger the box, the more significant a particu-
lar feature’s contribution to the prediction accuracy is. Along the
x-axis is each feature, and along the y-axis is each metric, corre-
sponding to each of our models. We calculate the importance of
each metric though the information gain ratio.

It can be observed that comm-comp_ratio and transfer_size are
important features when determining the correct processor configu-
ration, independent of the optimizing metric. Each feature has a dif-
ferent level of importance for each metric, e.g. transfer-work_ratio
is extremely important when optimizing for Energy Consumption,
less important for runtime, and has little importance for EDP. This
diagram shows the need for distinct models for different optimiza-
tion goals.

8.2 Alternative Predictive Modeling Techniques

Figure 15 shows the geometric mean of improvement of each kernel
from the baseline achieved by our approach and four widely used
classification techniques: Multi-layer Perceptron (MLP), K-Nearest
Neighbours (KNN), Logistic Regression, and Naive Bayes. Each
of the alternate predictive modeling techniques were trained and
evaluated using the same methods and training data as our model.

Our approach outperforms each alternate technique for every
optimization metric. None of the alternate techniques were able to
achieve a positive geometric mean when optimizing for runtime,
and were unable to yield better optimization results for any of the
kernels or metrics we considered. This figure shows the success
of our approach against alternate techniques. It is to note that the
performance of these alternate modeling techniques may improve
if there are more training examples to support the use of a richer
set of features. However, we found that our hierarchical SVM based
approach performs well on the available benchmarks.

8.3 Training and Deployment Overhead

Our models are trained offline with training examples. In this work,
collecting the examples took three days using one platform, which
has no impact on runtime cost. The overhead of using the trained
models includes extracting program features and making predic-
tions. These processes take place during the just-in-time compila-
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Figure 15: Comparisons to other predictive modeling techniques.
Our hierarchical SVM based approach delivers the best overall per-
formance.

tion of the OPENCL kernels. This overhead is negligible, approxi-
mate 10ms in total.

9. Conclusion

This paper has presented an automatic approach to map OPENCL
tasks on heterogeneous mobile platforms, providing a significant
performance improvement over comparative works. Central to our
approach is a unified, machine learning based framework that pre-
dicts, for a given optimization criterion, which of the processors of
the system to use to run the OPENCL program, and the clock fre-
quency of the processor. The prediction is based on a set of code
and runtime features of the program. Our model is built and trained
off-line, and is fully automatic. We evaluate our approach on an
ARM big.LITTLE mobile platform using a set of OPENCL bench-
marks from the Rodina and the Parboil benchmark suites. Exper-
imental results show that our approach consistently outperforms a
comparative OPENCL mapping technique across three evaluation
metrics: runtime, energy consumption and EDP. This translates to,
on average, above 93% of the performance given by an ideal pre-
dictor.
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