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Abstract
Data analytic applications built upon big data processing frame-

works such as Apache Spark are an important class of applications.

Many of these applications are not latency-sensitive and thus can

run as batch jobs in data centers. By running multiple applications

on a computing host, task co-location can significantly improve the

server utilization and system throughput. However, effective task

co-location is a non-trivial task, as it requires an understanding of

the computing resource requirement of the co-running applications,

in order to determine what tasks, and how many of them, can be

co-located. State-of-the-art co-location schemes either require the

user to supply the resource demands which are often far beyond

what is needed; or use a one-size-fits-all function to estimate the re-

quirement, which, unfortunately, is unlikely to capture the diverse

behaviors of applications.

In this paper, we present a mixture-of-experts approach to model

the memory behavior of Spark applications. We achieve this by

learning, off-line, a range of specialized memory models on a range

of typical applications; we then determine at runtime which of the

memory models, or experts, best describes the memory behavior of

the target application. We show that by accurately estimating the

resource level that is needed, a co-location scheme can effectively

determine how many applications can be co-located on the same

host to improve the system throughput, by taking into considera-

tion the memory and CPU requirements of co-running application

tasks. Our technique is applied to a set of representative data an-

alytic applications built upon the Apache Spark framework. We

evaluated our approach for system throughput and average nor-

malized turnaround time on a multi-core cluster. Our approach

achieves over 83.9% of the performance delivered using an ideal

memory predictor. We obtain, on average, 8.69x improvement on

system throughput and a 49% reduction on turnaround time over

executing application tasks in isolation, which translates to a 1.28x

and 1.68x improvement over a state-of-the-art co-location scheme

for system throughput and turnaround time respectively.
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1 Introduction
Big data applications built upon frameworks such as Hive [48],

Hadoop [41] and Spark [62] are commonplace. Unlike interactive

jobs, many of the data analytic applications are not latency-sensitive.

Therefore, they often run as batch jobs in a data center. However,

how to effectively schedule such applications to improve the server

utilization and the system throughput remains a challenge.

Specifically, if an application task is given the entirety of main

memory on each host to which it is deployed, it is effectively pre-

venting the host machine from being used for any other application

until the current one has finished, even if the task does not use

all of the memory. Because many data analytic tasks do not use

100% of the CPU during execution [2, 26] there is a significant

portion of unused processing capacity. An alternate approach is

to share the computing host between multiple application tasks

(where each task does not use all of the memory), this could save

time and energy by co-locating processes more effectively on fewer

machines.

Effective task co-locations require knowledge of the application’s

resource demand. For in-memory data processing frameworks like

Apache Spark, RAM consumption is a major concern [29]. It is

particularly important to understand the memory behavior of the

application. If we co-locate too many applications or give too much

data to a single task, such that their total memory consumption

exceeds the physical memory of the host, we could cause memory

paging onto the hard disk, or an “out-of-memory" error, slowing

down the overall system. To achieve this we need a technique

to predict the precise memory requirement of any given Spark

application.

Existing task co-location schemes require either: the user to

provide information of the resource requirement [23], or employ

an analytical [19] or statistical model [12, 20, 33] to estimate the

resource requirement based on historical jobs or runtime profiling.

These approaches, however, have significant drawbacks. Firstly,

it is difficult for a user to give a precise estimation of the appli-

cation’s requirement; and thus, the supplied information is often

over-conservative, asking far more resources than the application

needs. Secondly, a one-size-fits-all function is unlikely to precisely

capture behaviors of diverse applications, and nomatter how param-

eterized the model is, it is highly unlikely that a model developed

today will always be suited for tomorrow.

https://doi.org/10.1145/3135974.3135984
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In this paper, we present a generic framework to model the mem-

ory behavior of Spark applications. As a departure from prior work

that uses a fixed utility function to model the resource require-

ment, we use multiple linear and non-linear functions to model

the memory requirements of various applications. We then build

a machine learning classifier to select which function should be

used for a given application and dataset at runtime. As the pro-

gram implementation, workload and underlying hardware changes,

different models will be dynamically selected at runtime. Such an

approach is known as mixture-of-experts [25]. The central idea is
that instead of using a single monolithic model, we use multiple

models (experts) where each expert is specialized for modeling a

subset of applications. Using this approach, each memory model is

used only for the applications for which its predictions are effective.

One of the advantages of our approach is that new functions can

easily be added and are selected only when appropriate. This means

that the system can evolve over time to target a wider range of

applications, by simply inserting new functions. The result is a

new way of using machine learning for system optimization, with

a generalized framework for a diverse set of applications.

We evaluate our approach on a 40-node multi-core cluster us-

ing 44 Spark applications that cover a wide range of application

domains. We show that the accurate memory-footprint prediction

given by our approach enables the runtime scheduler to make bet-

ter use of spare computing resources to improve the overall system

throughput via task co-location. We use two distinct metrics to

quantify our results: system throughput and average normalized
turnaround time, and compare our approach against a state-of-art

resource scheduler [12]. Experimental results show that our ap-

proach is highly accurate in predicting the application’s memory

requirement, with an average error of 5%. By better utilizing the

memory resources of a host, our system achieves 8.69x improve-

ment of system throughput and a 49% reduction in application

turnaround time. This translates to a 1.28x and 1.68x improvement

over the state-of-art respectively on throughput and turnaround

time.

This paper makes the following contributions:

• We present a novel machine learning based approach to auto-

matically learn how to model the memory behavior of Spark

applications (Section 3);

• Our work is the first to employ mixture-of-experts for resource

demand modeling. Our generic framework allows new models

to be easily added to target a wider range of applications and

performance metrics;

• We show how to combine this resource modeling framework

with runtime task co-location policies to improve system through-

put for Spark applications (Section 4);

• Our system is immediately deployable on real systems and does

not require any modification to the application source code.

2 Background and Overview
2.1 Apache Spark
Apache Spark is a general-purpose cluster computing framework [62].

with APIs in Java, Scala and Python and libraries for streaming,

graph processing and machine learning [62]. It is one of the most

active open source projects for big data processing, with over 2,000

contributors in 2016.

Each Spark application runs as an independent set of executor
processes, each with dedicated memory space for executing paral-

lel jobs within the application. The executors are coordinated by

the driver program running on a coordinating node. Input data of
Spark applications is stored in a shared filesystem and organized as

resilient distributed datasets (RDDs) – a collection of objects that can

be operated on in parallel. Each Spark executor allocates its own

heap memory space for caching RDDs. This work exploits the data

parallel property of RDDs to characterize the application’s memory

behavior without wasting computing cycles.

2.2 Problem Scope
Our goal is to develop a framework to accurately predict the re-

source requirement of Spark applications for arbitrary inputs. In

this work, we focus on the memory requirement as RAM resources

are a major concern for in-memory data processing frameworks like

Apache Spark [29]. To demonstrate the usefulness of our approach,

we apply it to perform task co-location for batched, data-analytic

Spark applications. We do not consider latency-sensitive applica-

tions, such as search, as their stringent response time targets often

require isolated execution [32].

Our approach estimates the memory footprint of a Spark ex-

ecutor for a given input dataset. It then uses this information to

determine if there are enough spare resources (i.e. memory and

CPU) to co-locate tasks; if there is, it calculates how many tasks

could be co-located and how much work should be given to each

task. We exploit the fact that many big data applications do not

spend all of their time at 100% CPU [26] (in our case, the aver-

aged CPU load is under 40% – see Section 6.7). This observation

suggests that there are opportunities to co-locate Spark tasks with-

out significantly increasing the CPU contention and slow down

the performance of co-running applications (see also Section 6.8).

Our approach is applied to a simple task co-location policy in this

work, yet the resulted scheme outperforms the state-of-the-art task

scheduling scheme. We want to stress that our framework can be

used by other scheduling policies to provide an estimation of the

application’s resource demand to support decision making.

Our current implementation is restricted to applications whose

memory footprint is a function of their input size, this is a typical

behavior for many data analytical applications. In this work, we do

not explicitly model disk and network I/O contention, because prior

research suggests that they have little impact on the performance

on the type of the applications we target [38]. It is to note that this

observation may not hold for I/O intensive applications such as

database workloads [40]. We are also aware that not all applications’

memory consumption is correlated to the input size and would

require adding new functions to make predictions based on other

parameters, such as the model size of a machine learning algorithm.

Nonetheless, our framework is general and allows newmodels to be

easily added to target different applications, or other performance

and resource metrics in the future.

2.3 Overview of Our Approach
Our approach, depicted in Figure 1, is completely automated, and
no modification to the application source code is required.

Our mixture-of-experts framework for memory footprint predic-

tion consists of a range of distinct models built off-line. An expert

selector decides which model should be invoked, based on the run-

time information of the application. To use our resource modeling
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Figure 1. Overview of our approach. For an incoming application,

our approach first extracts the features of the program. Based on

the feature values, it predicts which of the off-line learned memory

functions best describes the memory behavior of the application. It

then instantiates the function parameters by profiling the applica-

tion on some small sets of the input data items. A runtime scheduler

then utilizes the memory function to perform task co-location.

framework to perform task co-location, a task scheduler follows a

number of steps described as follows.

For each “new" application that is ready to run, we predict which

of the off-line learned experts, termed ‘memory function’ in this
paper, best describes its memory behavior, i.e. how the memory

footprint changes as the input size varies. The selection of the

memory function is based on runtime information of the program,

such as the number of L1 data and instruction cache misses. This

information is collected by running the application on a small

portion (around 100MB) of the input data items
1
.

We then calibrate the selected function to tailor its parameters

to the target program and input. We do so by first profiling the

application with two small different-sized parts of the application

input to instantiate two function parameters; we then use the mea-

sured memory footprints to instantiate the parameter values. The

calibrated memory function is then used to determine how many

unprocessed data items should be allocated to an executor under

a given memory budget. During the profiling run, we also record

the average CPU usage of the application. After determining which

memory function to use and obtaining the CPU usage of the appli-

cation, the runtime scheduler can spawn new executors to run on

servers that have spare memory, and if the aggregate CPU load of

co-running tasks will go over 100% (i.e. to avoid CPU contention).

Since runtime information collection and model calibration are

all performed on some unprocessed data items and contribute to

the final output, no computing cycle is wasted on profiling. Fur-

thermore, we will re-run an executor process in isolation if it fails

because of an “out-of-memory" error, but this was not observed in

our experiments.

The key to our approach is choosing the right memory function

and then using lightweight profiling to instantiate the function

parameters. An alternative is to use extensive profiling runs at

runtime to find a model to fit the application’s memory behav-

ior. However, doing so will incur significant overhead and could

outweigh the benefit (see Section 6.5).

In the next section, we will describe how supervised machine

learning [1] can be used to construct thememory functions (experts)

and the expert selector to choose which function to use for any

“unseen" applications.

1
We choose this modest input size as an input of this size typically takes a short time

to process, while at the same time, it is sufficiently large (i.e. this often results in a

working set that is larger than the size of the L3 data cache in most of the high-end

CPUs) to capture the cache behavior of the application.

App Feature 
Extraction

Func. 
Exam.

1 2 3 4

Offline 
Profiling RunsMemory footprint

Training programs

Model Fitting 

Feature 
Extraction 

f
Memory function

Feature values

Task 
Scheduling

5

Func. 
Prediction

Figure 2. The training process.

Table 1. Memory functions used in this work

Modeling Technique Formula

(Piecewise) Linear Regression y =m ∗ xb

Exponential Regression y =m ∗ (1 − e (−b∗x ) )
Napierian Logarithmic Regression y =m + ln (x ) ∗ b
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Figure 3. The observed and predicted memory footprints for Sort
and PageRank from HiBench. The memory footprint of the two

applications can be accurately described using one of the memory

functions listed in Table 1.

3 Predictive Modeling
Our approach involves using multiple memory functions (experts)

to capture the memory requirement of an application for a spe-

cific runtime input. The set of memory functions are constructed

offline on a set of example programs, and then an expert selector

dynamically chooses the best expert to use at runtime.

Our expert selector for determining the memory function is a K-

nearest neighbour (KNN)2 classifier [27]. The input to the classifier is
a set of runtime features. Its output is a label to thememory function

that describes the memory behavior of the target application and

the specific dataset.

3.1 Learning Memory Functions
Our memory functions and expert selector are trained off-line using
a set of training programs. The learned expert selector can then be

used to predict which memory function to use for any new, unseen
application. Figure 2 depicts the process of collecting training data

to learn the memory functions to build the expert selector. For each

training program, we find a mathematical function to model the

application’s memory footprint and collect its feature values.

During the training process, we run selected training programs

in isolation on a computing host. We profiled each training ap-

plication with different sized inputs. For each program input, we

record the memory footprint of the Spark executor process. Next,

we try different mathematical modeling techniques to discover

which model best describes the relationship between input size and

memory allocation, that is, as the input size increases, how does

2
We have also explored several alternative classification techniques, including decision

trees and neural networks. This is discussed in Section 6.9.
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the memory allocation change. In this training phase, we record

the memory function used to describe each training program. Our

intuition is that the memory behavior for programs with similar

characteristics will be similar. This hypothesis is confirmed in Sec-

tion 6.9.

We use a set of linear and non-linear regression techniques to

model the application’s memory behavior. Table 1 gives the full

list of modeling techniques we used in this work. Each of our

models has two parameters, m and b, to be instantiated during

runtime model calibration. Here x and y are the input size (i.e.

the number of RDD objects in our case) and the predicted memory

footprint respectively. It is worth mentioning that all the memory

functions are automatically learned from training data, treating

the applications as black boxes; new applications would similarly

be learned automatically, potentially causing the addition of new

memory functions.

Example. Figure 3 shows the observed memory footprint and the

prediction given by our memory function for Sort and PageRank.
For these two applications, the memory functions used in this

work can accurately model their memory behaviors. Specifically,

the memory footprint, y, of Sort and PageRank for a given input

size, x , can be precisely described using an exponential function ,

y =m ∗ (1 − e (−b∗x ) ), wherem = 5.768, b = 4.479 and a Napierian

logarithmic function, y =m+ ln(x ) ∗b, wherem = 16.333, b = 1.79

respectively.

After building the memory functions, we need to have a mecha-

nism to decide which of the functions to use. One of the key aspects

in building a successful expert predictor is finding the right features

to characterize the input application task. This process of feature

selection is described in the next section. This is followed by sec-

tions describing training data generation and then how to use the

expert selector at runtime.

3.2 Runtime Features
Raw Features. Expert selection is based on runtime characteristics

of the application task. These characteristics, called features, are
collected using system-wide profiling tools: vmstat, Linux perf
and performance counter tool PAPI. Collected feature values are

encoded to a vector of real values. We considered 22 raw features

in this work, which are given in Table 2. Some of these features

are selected based on our intuition, while others are chosen based

on prior work [61]. All these features can be automatically and

externally observed, without needing access to the source code.

Feature Scaling. Supervised learning typically works better if the

feature values lie in a certain range. Therefore, we scaled the value

for each of our features between the range of 0 and 1. We record the

maximum and minimum value of each feature found at the training

phase, and use these values to scale features extracted from a new

application during runtime deployment.

Feature Reduction. Given the relatively small number of training

applications, we need to find a compact set of features in order

to build an effective predictor. Feature reduction is automatically

performed through applying Principal Component Analysis (PCA)
on the scaled raw features. This technique removes the redundant

features by linearly aggregating features that are highly correlated.

After application of PCA, we use the top 5 principal components
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Figure 4. The percentage of principal components (PCs) to the over-
all feature variance (a), and contributions of the 5 most important

raw features in the PCA space (b).

(PCs) which account for 95% of the variance of the original fea-

ture space. We record the PCA transformation matrix and use it to

transform the raw features of the target application to PCs dur-

ing runtime deployment. Figure 4a illustrates how much feature

variance that each component accounts for. This figure shows that

prediction can accurately draw upon a subset of aggregated feature

values.

Feature Analysis. To understand the usefulness of each raw fea-

ture, we apply the Varimax rotation [34] to the PCA space. This

technique quantifies the contribution of each feature to each PC.
Figure 4b shows the top 5 dominant features based on their con-

tributions to the PCs. Cache features, L1_TCM, L1_DCM and L1_STM,
are found to be important for describing memory behaviors. This

is not supervising as cache hit/miss rates are shown to be useful

in characterizing the application behavior in prior works [6, 43].

Other features of virtual memory usage (vcache), I/O (bo) and
thread contention (cs) are also considered to be useful, but are less

important compared to cache features. Using this technique, we

sort the raw features listed in Table 2 according to the importance.

The advantage of our feature selection process is that it automat-

ically determines what features are useful when targeting a new

computing environment where the importance of features may

change. Later in Section 6.9, we quantify the similarity of programs

mapped to the same memory function, which provides additional

evidences to justify the choice of features.

Recently, deep neural networks, such as Long short-term mem-

ory (LSTM), are shown to be powerful in extracting features from

program source code [9]. Since our current implementation only

relies on runtime information, techniques like [9] could be used to

provide additional features obtained from the source code. It is to

note that to train an effective deep neural network will require a

significantly larger number of training examples than we used in

this work.

3.3 Collect Training Data
We use cross-validation to construct memory functions and the KNN
classifer to select which function to use. This standard evaluation

technique works by picking some target programs for testing and

using the remaining ones for training. In this work, we use bench-

marks from the HiBench [24] and BigDataBench [18] suites to build

the memory models. Later we show that our approach works well

on benchmarks from the Spark-Perf [11] and the Spark-Bench [29]

suites, although we did not directly train our models on them. The
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Table 2. Raw features, sorted by their importance

Abbr. Desc. Abbr. Desc. Abbr. Desc. Abbr. Desc.

L1_TCM L1 total cache miss rate L1_DCM L1 data cache miss rate vcache % of memory used as cache L1_STM L1 cache store miss rate

bo # blocks sent (/s) L2_TCM L2 data cache miss rate L3_TCM L2 total cache miss rate cs # context switches / s

FLOPs # floating point operations /s in # interrupts / s L2_DCM L3 cache total miss rate L2_LDM L2 cache load miss rate

L1_ICM L1 instr. cache miss rate swpd % of virtual memory used L2_STM L2 cache store miss rate IPC instruction per cycle

L1_LDM L1 cache load miss rate L2_ICM L2 instr. cache miss rate ID % of idle time WA % of time on IO waiting

US % spent on user time SY % spent on kernel time

process of collecting training data is described in Figure 2. To collect

training data, we first extract the feature values of each training

program by running a single executor process in isolation, using

inputs with an average size of 100MB. Next, we run each train-

ing program with different sized inputs (ranging from ∼300MB to

∼1TB) and record the observed memory footprints. We then find a

memory function to closely fit the curve. For each training program,

we record its principal component values and the memory function.

Since training is only performed once, it is a one-off cost.

Like any supervised learning based approaches, the effectiveness

of our approach relies having a sufficient volume of high-quality

training data. We find the set of training benchmarks gives good

performance in this work, because the benchmarks already cover a

wide range of typical Spark applications. However, we remark that

when moving to a new application domain, additional benchmarks

may need in order to have an adequate sampling over the program

space. In this case, one will need to add more training programs

or using an automatic benchmark generator [10] to automatically

synthesize these programs.

3.4 Modeling Other Metrics and Program Phases
We believe our approach can be extended to model other metrics,

e.g. CPU contention. This involves finding appropriate raw-features,

modelling techniques for the experts and the expert selector, and

employing a multi-objective scheduling policy like [31]. Besides

these, the rest of our approach for automatic feature selection and

model generation remains the same. Furthermore, while not ex-

plored in this work, our approach can model changing program

phases by e.g. treating a long-running phase as an individual appli-

cation.

4 Runtime Deployment
Once we have learned the memory functions as described above,

we can use a KNN algorithm to choose an appropriate function to

estimate the memory footprint for any unseen applications with a

given input, and to use the prediction to co-locate Spark executor

tasks at runtime.

Our runtime system built upon YARN [50], a task and resource

manager for Spark. The co-location scheme will be triggered when

more than one Spark application is waiting to be scheduled. Figure 5

illustrates the architecture of our system. For each application task,

we predict its memory function for its input dataset, and then

use the memory function to co-locate Spark executor processes

whenever possible.

4.1 Memory Requirement Prediction
To determine the memory function for an application task, a run-

time system follows two steps, described as follows.
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Figure 5. Our system predicts the memory function for each ap-

plication and monitors the memory resources of computing nodes.

The runtime scheduler creates new executors to run on computing

nodes that have spare memory, and uses the memory function to

determine how many data items should be given to the executor

under a memory budget.

Memory Function Prediction. We run the incoming application

on a small set of the input RDD objects (with an aggregated size

of around 100MB) to collect and normalize feature values, and to

perform the PCA transformation. We then calculate the Euclidean

distance between the transformed input program feature vector

and the feature vector of each training program to find out the

nearest neighbor, i.e. the training program that is closest to the in-

put program in the feature space (see also Section 6.9). We use the

memory function of the nearest neighbor as the prediction. One

advantage of using KNN is that the Euclidean distance used for close-

ness evaluation can be used to measure the prediction confidence,

which essentially provides a degree of soundness guarantee. For

example, if an application is too far from any training program,

we can fall back to the default scheme to run the application, and

simultaneously re-train a new memory function for future. Our

current implementation performs feature extraction by running the

application on the lightly-loaded coordinating node (where the dri-

ver program runs). The results generated in the feature extraction

phase will contribute to the final output of the application.

CPU Load. We also record the average CPU usage during the

profiling run, and use this information later to determine whether

co-location will cause CPU contention among co-running tasks.

Model Calibration. After we have determined the memory func-

tion, we need to instantiate the function coefficients (i.e.m and b in

Table 1). We calculate these by running the application on two sets

of unprocessed input data items, where the first and the second sets

contain 5% and 10% of the input items, respectively. To determine

the function parameters, we measured the memory footprints dur-

ing profiling runs, and use them together with the corresponding

input sizes (i.e. the number of data objects) to solve the memory

function equation. At this stage, we are only concerned with the
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application’s memory footprint but not runtime. Therefore, profil-

ing runs can be performed by either grouping different application

tasks to run on a single host or running the target application with

other latency-insensitive tasks. Again, the results generated during

this phase will contribute to the final output of the application.

Moreover, since the input and output data of the Spark application

typically stored in a shared filesystem, we do not need to explicitly

move the data in or out from the profiling host.

4.2 Resource Monitor
Each computing node runs a daemon that periodically reports to

the resource monitor its memory usage and CPU load. Our current

implementation reports the average memory usage and system load

within a 5-minute window. The information is retrieved from the

Linux “/proc" system. Since this is performed at a coarse-grained

level (i.e. minutes), the overhead of monitoring and communication

is negligible. With this monitoring scheme in place, a task sched-

uler can respond to execution phase changes and load variations,

avoiding over-subscribing the computing resources.

4.3 Job Dispatcher
By default, we use the dynamic allocation scheme of Spark to de-

termine how many free server nodes to use to run an application.

However, the Spark dynamic scheme is not perfect, so we utilize

spare memory to spawn additional executors to run on servers

that have spare resources. Also, instead of waiting for the servers

to become completely free, our approach starts executing waiting

applications as soon as possible, reducing the turnaround time.

Once we have the memory function of the highest-priority ap-

plication, the job dispatcher will spawn a new executor for the

application to run on severs that have spare memory and if the

aggregate CPU load of all co-running tasks will not go over 100%.

The dispatcher uses the memory function to determine how much

memory is needed for the remaining input (to allow us to co-locate

more applications if possible), and how many data items can be

cached by the executor under a given memory budget. To estimate

the aggregate CPU load, we add up the CPU load of the computing

host (which is reported by the resource monitor) and the average

CPU usage of the application to be scheduled (which is obtained

during the profiling run for feature collection). Furthermore, the

number of data items to give to the co-located executor is dynam-

ically adjusted over time, adapting to the changes of execution

stages and memory resources. A naive alternative is to statically

set the executor heap size to the size of free memory. But doing

so can over-subscribe the memory resources than necessary and

precludes co-locating more than two applications (see Section 6.2).

To minimize the potential thread contention, we dynamically

adjust the number of threads (tasks) created by each executor to

evenly distribute processor cores across currently-running execu-

tors on a single host. Furthermore, to enforce a certain degree of

fairness, it is important to make sure that the new co-running

task does not use the resources that are deemed to be essential for

the currently running application. While fairness is not a focus of

this work, our prediction framework helps the scheduler in this

endeavor.

Table 3. Application task mixes used in the experiments

Label #App. Label #App. Label #App. Label #App.

L1 2 L2 6 L3 7 L4 9

L5 11 L6 13 L7 19 L8 23

L9 26 L10 30

5 Experimental Setup
5.1 Platform and Benchmarks
Hardware. We use a multi-core cluster with 40 nodes, each has

an 8-core Xeon E5-2650 CPU @ 2.6GHz (16 threads with hyper-

threading), 64GB of DDR4 RAM, and 16GB of swap. Nodes have SSD

storage and are connected through 10Gbps Ethernet, precluding

disk and network contention.

Software. Each computing node runs CentOS 7.2 with Linux ker-

nel 3.12. We rely on the local OS to schedule processes and do

not bind tasks to specific cores. We use Apache Spark 2.1.0 with

Hadoop Yarn 2.6 as the cluster manager and HDFS as the Spark

file management system. We use the Oracle Java runtime, Java SE

8u. We run Spark in the cluster mode. We also use the dynamic

resource allocation scheme, so that memory will be given back to

Spark when an application task completes. We run the Spark driver

on a dedicated coordinating node and try to run multiple Spark ex-

ecutors on a single host to improve the system throughput. Finally,

we use the Spark default configuration for memory management,

but we dynamically adjust the the number cores and heap size per

executor to match the available hardware resources.

Workloads. We used 44 Java-based Spark applications from four

widely used suites: HiBench [24], BigDataBench [18], Spark-Perf [11]

and Spark-Bench [29]. We used the native Spark implementations

from these suites. These benchmarks implement the core algo-

rithms used in real-life applications e.g. machine learning, image

and natural language processing, and web analysis.

5.2 Evaluation Methodology
Runtime Scenarios. We evaluated our scheme using ten runtime

scenarios with a mix of 2 to 30 randomly selected applications,

detailed in Table 3. For each scenario, we try ∼100 different appli-

cation mixes and make sure all benchmarks are included in each

scenario. The input size ranges from small (∼300MB) and medium

(∼30GB) to large (∼1TB). Inputs were generated using the input

generation tool provided by each benchmark suite. In the experi-

ments, all tasks are scheduled on a first come first serve basis, but

we stress that our technique can be applied to any scheduling policy.

Predictive Model Evaluation. Our memory functions (experts)

and expert selector are trained using 16 benchmarks from HiBench

and BigDataBench. We then apply the trained models to all 44

benchmarks from the four benchmark suites. When there are bench-

marks from HiBench and BigDataBench present in the task group,

we use leave-one-out-cross-validation to exclude the target applica-

tions from the training program set and use the remaining bench-

marks from HiBench and BigDataBench to build our model. To

provide a fair comparison, when testing an application from one

benchmark suite that has an equivalent implementation in the other

suite, we also exclude the benchmark from other suite from the
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training set. For example, when testing Sort from HiBench, we

exclude Sort from BigDataBench from training.

Performance Report. For each test case, we report the geometric
mean performance across all configurations. We replay the sched-

ule decisions for each test case multiple times, until the difference

between the upper and lower confidence bounds under a 95% con-

fidence interval setting is smaller than 5%. Furthermore, the time

spent on feature extraction, model calibration, and prediction is

included in our results.

5.3 Evaluation Metrics
We use two standard evaluation metrics for multi-programmed

workloads: system throughput and turnaround time. We use the

definitions given in [14], defined as follows.

1. System throughput (STP) is a higher is better metric. It de-
scribes the aggregated progress of all jobs under co-location exe-

cution over running each job one by one using isolated execution.

This is calculated as:

STP =
n∑
i=1

Cisi

Ccli
(1)

where n is the number of application tasks to be scheduled, and

Cisi and Ccli are the execution time for task i under the isolated
execution mode (is) where the task uses all available memory;

and the co-locating mode (cl) where there may be multiple tasks

running on the same host.

2. Average normalized turnaround time (ANTT) is a smaller
is better metric. It quantifies the time between a task being created

and its completion, indicating the average user-perceived delay.

This metric is defined as:

ANTT =
1

n

n∑
i=1

Ccli

Cisi
(2)

5.4 Comparative Approaches
Quasar. This is a state-of-the-art co-location scheme [12].Quasar

uses classification techniques to determine the characteristics of

the application to perform resource allocation, and task assignment

and co-location. Similar to our dynamic scheme, Quasar monitors

workload performance to adjust resource allocation and assignment

when needed. Unlike our approach, Quasar uses a single model

for resource estimation. To provide a fair comparison, we have

implemented the Quasar classification scheme using the same set

of training programs that we used to build our models.

Pairwise. This pairwise co-location scheme looks for servers with

spare memory to co-locate an additional task on the host. It sets

the maximum heap size of the co-locating task to the size of free

memory, and relies on the Spark default scheduler to determine

how many RDD data items to be allocated to the co-running task.

This represents the default resource allocation policy used by many

co-location schemes [31].

Oracle. We also compare our approach to the performance of an

ideal predictor (Oracle) that gives the perfect memory prediction

for an application. This comparison indicates how close our ap-

proach is to the theoretically perfect solution. The prediction given

by the Oracle scheme is obtained through profiling the application

on a given set of input RDD data items, but the profiling overhead is
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Figure 6.Our approach outperforms Pairwise andQuasar on STP

(a) and ANTT (b). The baseline is running the applications one by

one using isolated execution. The min-max bars show the range of

performance achieved across task mixes for each runtime scenario.

not included in the results since we assume the Oracle predictor

has the ability to make prophetic prediction. Using the Oracle

predictor, the runtime scheduler can then search for the optimal

number of data items to be given to a co-running task.

6 Experimental Results
In this section, unless stated otherwise, we report each approach’s

performance on STP and ANTT, by normalizing the results to a

baseline that schedules the applications one by one with each appli-

cation exclusively using all thememory of each allocated computing

node. The normalized STP and ANTT are referred to as normalized
STP and ANTT reduction (shown in percentage) respectively.

6.1 Highlights
The highlights of our evaluation are as follows:

• With the help of our mixture-of-experts approach, a simple task

co-location scheme achieves, on average, a 8.69x improvement

on STP and a 49% reduction on ANTT over isolated execution.

This translates to a 1.28x and 1.68x improvement on STP and

ANTT respectively, when compared toQuasar. See Section 6.2;

• Our approach is highly accurate in predicting the memory

footprint of Spark applications, with an error of less than 5%

for most cases. See Section 6.9;

• Our scheme is low-overhead. The time spent on feature ex-

traction and model calibration is less than 10% of the total

application execution time, and the profiling runs contribute to

the final results. See Section 6.6;

• We thoroughly evaluate our scheme by comparing it against

several alternative task co-location schemes and modeling tech-

niques, and performing a detailed analysis on the working

mechanism of the approach.
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Figure 7. CPU utilization across servers when scheduling 30 Spark applications (L10). The right-most non-zero point indicates the time

when all applications finish. Our approach leads to the highest server utilization and quickest turnaround time.

Table 4. Application mix for the experiment shown in Figures 7 and 8.

Order App. In.Size Order App. In.Size Order App. In.Size Order App. In.Size Order App. In.Size

1 BDB.Wordcount 30GB 7 HB.Scan 30GB 13 SP.DecisionTree 30GB 19 BDB.Kmeans 30GB 25 SP.B.MatrixMult 1TB

2 SP.Kmeans 1TB 8 HB.TeraSort 1TB 14 SP.Spearman 1TB 20 HB.Sort 1TB 26 BDB.Sort 30GB

3 SP.glm-classification 1TB 9 SB.Hive 1TB 15 SB.MatrixFact 1TB 21 SP.CoreRDD 300MB 27 SB.RDDRelation 1TB

4 SP.glm-regression 1TB 10 SP.NaiveBayes 1TB 16 BDB.Grep 1TB 22 SP.Gmm 1TB 28 SP.Pearson 1TB

5 SP.Pca 30GB 11 BDB.PageRank 1TB 17 SB.LogRegre 1TB 23 HB.Join 1TB 29 SP.Chi-sq 30GB

6 SB.SVD++ 1TB 12 HB.PageRank 30GB 18 BDB.NaivesBayes 30GB 24 SP.Sum.Statis 30GB 30 HB.Kmeans 1TB

6.2 Overall Performance
STP. Figure 6 (a) confirms that task co-location improves system

throughput. As the number of tasks to be scheduled increases, we

see an overall increase in the STP. Pairwise performs reasonably

well for small task groups, but it misses significant opportunities for

large task groups. For L9 and L10, Pairwise only delivers half of the

Oracle performance. This is because Pairwise does not scale up

beyond pairwise co-location. Quasar performs significantly better

than Pairwise by using a classifier model to coordinate resources

among co-locating tasks, but it is not as good as our approach. By

employing multiple functions to model diverse applications, our

approach constantly outperforms Pairwise and Quasar across all

task groups. For large task groups (L8 - L10), our approach deliv-

ers over 1.72x and 1.48x improvement on the STP over Pairwise

andQuasar respectively. Overall, Quasar gives on average 6.6x

improvement on STP, which translates to 65.7% of the Oracle

performance. Our approach achieves 8.69x improvement on STP,

which translates to a 1.28x improvement overQuasar or 83.9% of

the Oracle performance.

ANTT. Figure 6 (b) shows the ANTT reduction over the baseline.

By maximizing the system throughput, task co-location in general

leads to favorable ANTT results, particularly for large task groups.

Quasar and our approach outperforms Pairwise on ANTT by a

factor of over 4x from L2 onward. Our approach delivers better

turnaround time over Quasar, by avoiding memory contention

among co-locating Spark tasks. On average, our approach reduces

the turnaround time by 49% across different task groups. This trans-

lates to 93.4% of the Oracle performance. When compared with the

54% Oracle performance given byQuasar, our approach achieves

1.68x better turnaround time.

Summary. We achieve 83.9% and 93.4% of the Oracle performance

for STP and ANTT respectively, outperforming Pairwise, a widely

used co-location policy, and Quasar, a state-of-the-art co-location

policy. The advantage of our approach is largely attributed to its
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Figure 8. Resultant STP (a) and turnaround time (b) for the sched-

uling scenario in Figure 7. Our approach gives better STP and

faster turnaround time when compared with alternative co-location

schemes.

use of multiple models instead of just one to precisely capture an

applications’ memory behavior. Without this accurate information,

the alternative scheme often over- or under-provisions resources,

leading to worse performance.

6.3 Server Utilization
Figure 7 shows the CPU utilization across 40 computing nodes for

Pairwise, Quasar and our approach when scheduling 30 Spark

applications (L10) using different input sizes. Table 4 gives the ap-

plication mix for this experiment, while Figure 8 presents the turn-

around time (i.e. the wall clock time to finish the set of jobs) given

by each approach. Additionally, Table 4 shows the applications and

the input size performed that where used to create Figure 7. By

carefully co-locating tasks using memory footprint predictions, our

approach gives the best server utilization, which in turn leads to

the highest STP (1.81x and 1.39x higher STP over Pairwise and

Quasar respectively) quickest turnaround time (1.46x and 1.28x

faster turnaround time over Pairwise andQuasar respectively).

6.4 Compare to Unified Models
Figure 9 compares our scheme to approaches that use one modeling

technique to predict the application’s memory footprint. In addition
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Figure 9. Compare to unified model based approaches that use a

single modeling technique to describe the application’s memory

behavior.

to the threememory functions listed in Table 1, we also compare our

scheme to a 3-layer artificial neural network (ANN) trained using a

backpropagation algorithm. We use the same training data to build

the ANN model to predict the memory footprint. The input to the

ANNmodel is the same set of features used by our approach. Among

the single model approaches, the ANN gives the best performance

due to its ability to model linear and non-linear behaviors. Our

approach outperforms ANN and all other approaches on STP and

ANTT. The results suggest the need for using multiple modeling

techniques to capture the diverse application behaviors. This work

develops a generic framework to support this.

6.5 Compare to Online Search
Figure 10 compares our approach to a method that uses descent

gradient search to dynamically adjust the right input size for a

given memory budget. The online search based approach gives

rather disappointing results due to the large overhead involved in

finding the right input size. Furthermore, this approach also suffers

from a scalability issue, i.e. the searching overhead grows as the

number of computing nodes increases. Our approach avoids the

overhead by directly predicting the memory footprint, leading to

2.4x and 2.6x better performance on STP and ANTT respectively.

6.6 Profiling Overhead
The stack chart in Figure 11 shows the average time spent on feature

extraction and model calibration with respect to the total execution

time per evaluation scenario. Figure 12 gives a breakdown on per

benchmark basis using an input size of around 280GB. As profiling

is performed on a single host (thus having little communication

overhead) using small inputs, the cost is moderate. Overall, the

time spent on feature extraction and model calibration accounts

for 5% and 8% respectively to the total execution time. We stress

that profiling runs also contribute to the final output of the task, so

no computing cycles are wasted; and profiling is performed while

the application is waiting to be scheduled.
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Figure 10. Compare to using online search to allocate input for

a given memory budget. Our approach significantly outperforms

the online search scheme, because it avoids the runtime overhead

associated with finding the optimal number of data items to be

given to the co-running task.
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Figure 11. Average profiling time to total task execution time. It is

to note that during feature extraction and model calibration, the

application always executes a portion of the unprocessed data, no

computing cycles are wasted.
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Figure 12. Average profiling time to total runtime per program for

HiBench and BigDataBench.

6.7 CPU Load in Isolation Mode
Figure 13 shows the average CPU load when a benchmark is run-

ning in isolation using all the system’s memory exclusively. The

CPU load for most of the 44 benchmarks is under 40%. As a result,

the CPU is often not fully utilized when just running on application.

This is in line with the finding reported by other researchers [2].

Our approach exploits this characteristic to improve the system

throughput through task co-location.
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Figure 13. CPU load distributions across benchmarks when the

application is executed in the isolation mode.
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Figure 14. Violin plot showing the distribution of slowdown when

using our scheme to co-locate the target benchmark with another

application on a single host. The baseline is running the target ap-

plication in isolation. Here we run each of the 16 target benchmarks

from HiBench and BigDataBench along with each of the remaining

43 benchmarks.

6.8 Co-location Interferences
Interferences among Spark Benchmarks. The violin plot in Fig-

ure 14 shows the distribution of slowdown when running each of

the 16 benchmarks from HiBench and BigDataBench along with

each of the remaining 43 benchmarks using our scheme. The shape

of the violin corresponds to the slowdown distribution. The thick

black line shows where 50% of the data lies. The white dot is the

position of the median. In the experiment, we first launch the tar-

get application and then use the spare memory to co-locate an-

other competing workload. The input size of the target program

is ∼280GB. As can be seen from the figure, the slowdown across

applications is less than 25% and is less than 10% on average. For

applications with little computation demand, such as HB.Sort, the
slowdown is minor (less than 5%). For benchmarks with higher com-

putation demand, such as HB.Aggregation, we observe greater

slowdown due to competing of computing resources among co-

locating tasks. Overall, our co-location scheme has little impact on

the application’s performance.

Interferences to PARSEC Applications. We further extend our

experiments to investigate the impact for co-locating Spark tasks

with other computation-intensive applications. For this purpose,

we run some computation-intensive C/C++ applications from the

PARSEC benchmark suite (v3.0) [3] using the large, native input

provided by the suite. Figure 15 shows the slowdown distribution

Blackscholes

Bodytrack
Canneal

Facesim
Ferret

Fluidanimate

Freqmine
Raytrace

Streamcluster

Swaptions Vips
X264

0

5

10

15

20

25

30

Sl
ow

do
w

n 
ov

er
 is

ol
at

ed
 e

xe
c.

 (%
)

Figure 15. The slowdown distribution of computation-intensive

PARSEC benchmarks when they run with a Spark task under our

scheme. The baseline is running the target application in isolation.
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Figure 16. Program feature space. The original feature space is pro-

jected into 2 dimensions using PCA. Programs can be grouped into

three clusters and mapped to the three memory models described

in Table 1.

of each PARSEC benchmark when they run together with each of

the 44 Spark benchmarks under our scheme. As all PARSEC bench-

marks are share-memory programs, this experiment was conducted

on a single host. As expected, we observe some slowdown to the

computation-intensive PARSEC benchmark, but the slowdown is

modest – less than 30%. For most of cases, the slowdown is less

than 20%. Given the significant benefit on system throughput and

server utilization given by our approach, we argue that such a small

slowdown is acceptable when maximizing the server utilization is

desired (which is typical for many data center applications). There

are other schemes such as Bubble-Flux [60] for reducing the in-

terference via dynamically pausing non-critical tasks, which are

orthogonal to our scheme.

6.9 Model Analysis
Program Distribution. Figure 16 visually depicts the distribution

of benchmarks on the feature space. To aid clarity, we use PCA to
project the dimension of the original feature space down to two.

Each point in the figure is one of the 44 benchmarks. This diagram

clearly shows that the 44 benchmarks can be grouped into three

clusters. After inspecting each cluster, we found that we indeed use

the same memory function (given on the figure) for all benchmarks

in a cluster. This diagram justifies the chosen number of memory

functions. It also confirms our assumption that programs with
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Figure 17. Predicted memory footprints vs measured values for

HiBench (HB) and BigDataBench (BDB).

similar features can be modeled using similar memory functions.

To measure the similarity of programs within each cluster, we

calculate the Pearson correlation coefficient of each program to

its cluster center on the 2-d feature space shown in Figure 16. Our

results show that the correlation coefficient is above 0.9999 for

all program, with most programs have a correlation coefficient of

1.0 (the strongest correlation). This confirm that our features are

effective in capturing the similarity of programs that use the same

memory function.

We want to highlight that one of the advantages of our KNN
classifier is that the distance used to choose the nearest neighbor
program gives a confidence estimation of how good the predicted

memory function will be. If the target application is far from any

of the clusters in the feature space, it suggests that a new memory

modeling technique will be required (and our approach allows

new memory functions to be easily inserted), or a conservative

co-location policy should be used to avoid saturating the memory

system.

Prediction Accuracy. Figure 17 compares the predicted optimal

memory allocation against the measured value, using an input

size of around 280GB. All the models are trained and evaluated

using “leave-one-out-cross-validation" (see also Section 5.2)). The

prediction error of our approach is less than 5% in most cases ex-

cept for HB.PageRank, BDB.PageRank and BDB.Sort for which our

approach over-provisions around 8% to 12% of the memory. This

translates to 1.5GB to 2GB of memory. Our approach also slightly

under-estimates the memory requirement for some benchmarks,

but the difference is small so it does not significantly affect the per-

formance. In general, the accuracy can be improved by using more

training programs and more sophisticated modeling techniques to

better capture the application memory requirement, which is our

future work. In practical terms, one can also slightly over-provision

(e.g. 10%) the memory allocation to applications with higher priori-

ties to tolerate potential prediction errors. Overall, our approach

can accurately predict the optimal memory allocation, with an

average prediction error of 5%.

Compare to Alternative Classifiers. Table 5 gives the memory

function prediction accuracy (averaged across benchmarks and

inputs) of various alternative classification techniques and our KNN
model. The alternative models were built using the same features

and training data. Thanks to the high-quality features, all classifiers

are highly accurate in predicting the memory function. We choose

KNN because its accuracy is comparable to alternative techniques

Table 5. Prediction accuracy for different classifiers

Classifier Accuracy (%) Classifier Accuracy (%)

Naive Bayes 92.5 SVM 95.4

MLP 94.1 Random Forests 95.5

Decision Tree 96.8 ANN 96.9

KNN 97.4

but does not require re-training when a new memory function is

added.

Memory Functions. Figure 18 compares the predicted memory

footprint to the measured values for HiBench and BigDataBench,

showing that our memory functions can precisely capture the ap-

plication’s memory footprint. This figure also shows that a single

model is unlikely to capture diverse application behaviors. We ad-

dress this by developing an extensible framework into which we

can easily plug-in multiple models to capture different application

behaviors.

7 Related Work
Our work lies at the intersection between big data workload tun-

ing and machine learning based system optimization. There is no

existing work which is similar to ours, in respect to co-locating big

data applications with optimal memory allocation using predictive

modeling.

7.1 Optimizing Big Data Workloads

Domain-specificOptimization. There exists a large body ofwork

focusing on optimizing a single application using domain-specific

knowledge. Prior work in domain-specific optimizations for single

big data applications includes query optimization [4, 8, 58], graph or

data flow optimization [5, 16, 28, 44], task tuning [7] and personal

assistant and deep learning services [22]. By contrast, we target

resource modeling of Spark applications and demonstrate that this

technique is useful for scheduling multiple application tasks.

MemoryManagement. Numerous techniques have been proposed

to manage memory resources of big data applications [46]. Many of

the prior works require using dedicated APIs to rewrite the appli-

cation [15, 36]. Fang et al. introduce Interruptible Tasks, a parallel
data task that can be interrupted upon memory pressure. Their

work aims to solve the out-of-memory problem when processing

large amounts of data on a single host [15]. This work is thus or-

thogonal to our work and can be used to address the problem of

occasional over-subscription of memory resources. MemTune is a

recent work on heap management for Spark applications [59]. It

detects memory contention and dynamically adjusts the memory

partitions between Spark processes, but it does not address the

problem of precise memory allocation.

Application Scheduling. Verma et al. use profiling information to

schedule jobs within a MapReduce application [51]. Mashayekhy et
al. develop energy-aware heuristics to map tasks of a big data appli-

cation to servers to minimize energy usage [35]. Unlike our work,

all these works target scheduling jobs within a single application,

and allocate all physical memory of a machine to one single appli-

cation. Other work looks at mapping parallelism by determining
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Figure 18. Comparisons of the predicted memory footprint to the measured value. This set of memory functions can precisely capture the

memory requirement of our benchmarks.

the number of cores and process time to be allocated to an applica-

tion [21]. Our method promotes memory utilization on a local host,

allowing the system to perform more tasks than previously allowed

with current methods. Consequently, higher multi-tasking levels

may lead to an increase in non-local data accesses within each task;

the scheduling framework in [21] is therefore complementary to

our work.

Task Co-location. Prior studies in task co-location include Bubble-

Flux [60], Quasar [12], Tetris [19] and Cooper [31], which co-locate

tasks across machines. Other studies schedule workloads on multi-

core processors [30, 63]. All the approaches mentioned above em-

ploy a single monolithic function tomodel the resource requirement

of application tasks. There is little ability to examine whether the

function fits the application under the current runtime scenario.

Other fine-grained scheduling frameworks, like Mesos [23], rely on

the user to provide the resource requirement of the application [23].

By contrast, we develop an extensive framework that uses multiple

modeling techniques to automatically estimate the resource require-

ment. Our approach allows new models to be added over time to

target a wider range of applications. Experimental results show that

our approach yields better performance than a single model based

approach. On the other hand, the co-location policies developed in

these prior works for determining which two applications should

co-locate are complementary to our work.

7.2 Predictive Modeling
Recent studies have shown that machine learning based predictive

modeling is effective in code optimization [17, 37, 42, 45, 49, 56],

parallelism mapping [47, 52–55], task scheduling [20, 39], and pro-

cessor resource allocation [57]. In [13], a mixture-of-experts ap-

proach is proposed to schedule OpenMP programs on multi-cores.

Their approach uses multiple linear regression models to predict

the optimal number of threads to use for a given program on a

single machine. Our approach differs from [13] in two aspects. First,

we target a different problem (determining the memory footprint

vs the number of threads) and a different scale (multiple vs a single

node). Secondly, we use different modeling techniques, both linear

and non-linear, to capture the memory behaviors of different appli-

cations. No work so far has used predictive modeling to model an

application’s memory requirement to co-locate big data application

tasks. This work is the first to do so.

8 Conclusions
This paper has presented a novel scheme based on a mixture-of-

experts approach to estimate the memory footprint of a Spark ap-

plications for a given dataset. Our approach determines at runtime,

which of the off-line learned functions should be used to model the

application’s memory resource demand. One of the advantages of

our approach is that it provides a mechanism to gracefully add addi-

tional expertise knowledge to target a wider range of applications.

We combine our resource prediction framework with a runtime task

scheduler to co-locate latency-insensitive Spark applications, aim-

ing to improve system throughput and application turnaround time.

Using the accurate prediction given by our framework, a runtime

task scheduler can efficiently dispatch multiple applications to run

concurrently on a single host to improve the system’s throughput

and at the same time to ensure the total memory consumption does

not exceed the physical memory of the host. Our approach is ap-

plied to 44 representative big data applications built upon Apache

Spark. On a 40-node cluster, our approach achieves, on average,

83.9% and 93.4% of the Oracle performance on system throughput

and turnaround time, respectively.
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