
Partitioning Streaming Parallelism for Multi-cores:
A Machine Learning Based Approach

Zheng Wang
Institute for Computing Systems Architecture

School of Informatics
The University of Edinburgh, UK

jason.wangz@ed.ac.uk

Michael F.P. O’Boyle
Institute for Computing Systems Architecture

School of Informatics
The University of Edinburgh, UK

mob@inf.ed.ac.uk

ABSTRACT

Stream based languages are a popular approach to express-
ing parallelism in modern applications. The efficient map-
ping of streaming parallelism to multi-core processors is,
however, highly dependent on the program and underlying
architecture. We address this by developing a portable and
automatic compiler-based approach to partitioning stream-
ing programs using machine learning. Our technique pre-
dicts the ideal partition structure for a given streaming ap-
plication using prior knowledge learned off-line. Using the
predictor we rapidly search the program space (without ex-
ecuting any code) to generate and select a good partition.
We applied this technique to standard StreamIt applications
and compared against existing approaches. On a 4-core plat-
form, our approach achieves 60% of the best performance
found by iteratively compiling and executing over 3000 dif-
ferent partitions per program. We obtain, on average, a
1.90x speedup over the already tuned partitioning scheme
of the StreamIt compiler. When compared against a state-
of-the-art analytical, model-based approach, we achieve, on
average, a 1.77x performance improvement. By porting our
approach to a 8-core platform, we are able to obtain 1.8x im-
provement over the StreamIt default scheme, demonstrating
the portability of our approach.

Categories and Subject Descriptors

D.3.4 [Programming languages]: Processors—Compil-
ers, Optimization; D.1.3 [Programming Techniques]: Con-
current Programming—Parallel Programming

General Terms

Experimentation, Languages, Measurement, Performance

Keywords

Compiler Optimization, Machine Learning, Partitioning
Streaming Parallelism

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PACT’10, September 11–15, 2010, Vienna, Austria.
Copyright 2010 ACM 978-1-4503-0178-7/10/09 ...$10.00.

1. INTRODUCTION
Multi-core processors are now mainstream, offering the

promise of energy efficient hardware performance [12]. To
make use of such potential, however, new and existing appli-
cations must be written or transformed so that they can be
executed in parallel. While there has been considerable re-
search effort focused on (semi-) automatically transforming
existing sequential programs into a parallel form [38], it re-
mains uncertain whether this is a long term viable approach
to achieving scalable parallelism [2].

An alternative approach has been to develop new high
level programming languages and models where the paral-
lelism is explicit. Although the application developer has
to think explicitly about parallel structure in the applica-
tion, he is freed from implementation concerns. As an ap-
plication may be ported to new platforms many times in its
life-time, this is a significant advantage. Examples of such
languages and models include UPC [8], X10 [29], Galois [17]
and HTA [3].

One popular language domain focuses on streaming ap-
plications exposing task, data and pipeline parallelism [33].
Parallelism in streaming languages is explicit and it is now
the system’s responsibility to effectively map this parallelism
to the underlying hardware. Mapping is typically broken
into two stages: partitioning the program graph into regions
which are allocated to threads and then scheduling, which
allocates the threads to the underlying hardware. This is by
no means a new challenge and there is an extensive body
of work on mapping task, data and pipeline parallelism to
parallel architectures using runtime scheduling [28], static
partitioning [18, 30, 35], analytical models [7, 25], heuristic-
based mappings [10], or ILP solvers [16, 39]. They can each
achieve good performance but are restricted in their appli-
cability. Fundamentally, such approaches are based on the
developers’ view about the most significant costs of the tar-
get platform and typical programs, encoding a hardwired
human-derived heuristic. However, as we show later, the
best form of the program varies across programs and plat-
forms.

The problem with hardwired heuristics has been addressed
by several researchers [23, 34] who advocate the use of ma-
chine learning (ML) as a methodology to automatically con-
struct optimisation heuristics [34, 41]. Such an approach has
the advantage of being portable across different platforms
without requiring expert knowledge. However, until now,
it has been limited to relatively straightforward problems
where the target optimization to predict is fixed, e.g. deter-
mining compiler flag settings [15], loop unroll factors [22] or

307

the number of threads per parallel loop [41]. Determining
the best partitioning of a stream program is fundamentally
a more difficult task. First of all, rather than predicting
a fixed set of optimisations we are faced with predicting an
unbounded set of coalesce and split operations on a program
graph. As the graph changes structure after each operation,
this further increases the complexity. A secondary issue lim-
iting the applicability of ML is its reliance on sufficient train-
ing data. This problem is particularly acute for emerging
parallel programming languages where the application code
base is small as is the case for streaming languages.

This paper tackles both these problems. It develops a
technique to automatically derive a good partitioning for
StreamIt [36] programs on multi-cores making no assump-
tion on the underlying architecture. Rather than predicting
the best partitioned graph, it develops a nearest-neighbour
based machine learning model that predicts the ideal parti-
tioned structure of the StreamIt program. It then searches
through a program transformation space (without execut-
ing any code) to find a program of the suitable structure.
To overcome the problem of insufficient training programs
we have developed a micro-kernel stream program genera-
tor. This generator is able to provide many small training
examples for the predictive model.

To show the automatic portability of our approach, we
have evaluated our ML based approach on two different multi-
core platforms. On a 4-core machine, on average, our ap-
proach achieves 1.90 times speedup over the dynamic pro-
gramming based StreamIt partitioner, which translates to
60% of the performance gained by exhaustively evaluating
over 3000 different partitions per program and selecting the
best. Compared to a state-of-the-art analytical model-based
approach, we achieve a 1.77x performance improvement.
When ported to an 8-core machine, we achieved 1.80x per-
formance improvement over the the dynamic-programming
based StreamIt partitioner.

The remainder of this paper is structured as follows. We
motivate our work based on simple examples in section 2.
This is followed by a description of our machine learning
based approach in section 3 and 4. Our experimental method-
ology and results are discussed in sections 5 and 6, respec-
tively. We establish a wider context of related work in sec-
tion 7 before we summarize and conclude in section 8.

2. BACKGROUND ANDMOTIVATION

2.1 StreamIt Language
StreamIt [11] is a language supporting streaming program-

ming based on the Synchronous Data Flow (SDF) model [19].
In StreamIt, computation is performed by filters which are
the basic computational units. Filters communicate through
dataflow channels, which are implemented as FIFO queues.
StreamIt provides a simple means of constructing rich hier-
archically parallel structures such as pipeline and split-join
(i.e., data parallelism).

Each StreamIt program is represented by a stream graph.
Figure 1 (a) illustrates a simplified stream graph for the
MP3DECODER benchmark. Each node is a task that can
be executed in pipeline fashion. Concurrent task paral-
lelism is achieved after each splitter node. Communication
between tasks is defined by and restricted to the arcs be-
tween nodes. It is the compiler’s responsibility to partition
this graph and allocate partitions to threads which are then

Splitter

Antialias

IMDCT

Antialias

IMDCT

Input

Splitter

CollapsedData

Parallel

Joiner

...Identity Filter

Splitter

Joiner

Joiner

Output

Identity Filter

Splitter

Joiner

ComFilter ComFilter

Splitter

FusedFilter FusedFilter

Joiner

Input

Output

Splitter

CollapsedData

Parallel

Joiner

Splitter

FusedFilter

FusedFilter

FusedFilter

FusedFilter

Filter Filter

Joiner

Input

Output

Figure 1: A simplified stream graph of the
MP3DECODER StreamIt program (a). Each node
is a task that can be executed in pipeline fashion.
Concurrent task parallelism is achieved after each
splitter node. A greedy partitioner applied to this
program gives the graph (b) with just 4 nodes. A
dynamic programming based partitioner gives the
graph (c) with 8 nodes.

scheduled on the underlying hardware. This is a 2 stage
process and is illustrated in figure 3. First, the nodes in
the original graph are merged into larger nodes or spilt into
smaller nodes by a sequence of fuse and fission operations.
This gives a transformed program where each node is allo-
cated to a separate thread. Each thread is then scheduled
to the hardware by the runtime. The first stage we call par-
titioning as it is concerned with determining those regions
of the stream program that will be eventually allocated to
a thread. The second stage we call scheduling and is re-
sponsible for the allocation of threads to processors. In this
paper, we are interested in the mapping of nodes to threads
and hence focus purely on the first stage of the process1,
partitioning.

2.2 Motivation
Finding a good partitioning for a streaming program is

difficult due to the large number of possible partitions. Fig-
ure 1 (b) and (c) show two possible partitioned versions of
the original MP3DECODER program shown in figure 1 (a).
Both are obtained by applying a sequence of fuse and fis-
sion operations on the original graph. The first partitioning
shown in figure 1 (b) corresponds to a greedy partitioner,
the second partitioning, figure 1 (c) corresponds to a dy-
namic programming based method; both are StreamIt com-
piler built in heuristics [36]. The question is which is the
best one? This problem of graph partitioning in its general

1Note: as we use a machine learning approach, we implicitly
consider the behaviour of the scheduler along with the rest
of the underlying system (hardware, operating systems etc.)
when generating training data.

308

MP3DECODER DES DCT
0.0

0.5
1.0

1.5

2.0
2.5

3.0

 Dynamic Programming Partitioner Greedy Partitioner

S
p
e
e
d
u
p

(a) 4-core platform

MP3DECODER DES DCT
0.0

0.5

1.0

1.5

2.0

S
p
e
e
d
u
p

 Dynamic Programming Partitioner Greedy Partitioner

(b) 8-core platform

Figure 2: The relative performance of 2 partitioning
schemes with respect to a näıve partitioning scheme.
The results are shown for 2 platforms and 3 distinct
StreamIt programs. Greedy partitioning performs
well on MP3DECODER on the 4-core platform but
not as well as dynamic programming partitioning
on the 8-core. This relative ordering is reversed for
DES and DCT. Determining the best partitioning
depends on program and platform.

form is known to be NP-complete and it is difficult to devise
a general heuristics [5].

To illustrate this point, consider figure 2, which shows the
performance of each partitioning approach on two different
multi-core platforms: a 2x dual-core (4-core) machine and
a 2x quad-core (8-core) machine. On the 4-core the greedy
scheme performs well for MP3DECODER; it has a lower
communication cost, exploiting data parallelism rather than
the pipeline parallelism favoured by the dynamic program-
ming partitioner. On the 8-core platform, however, the dy-
namic programming-based heuristic delivers better perfor-
mance as load balancing becomes critical.

When examining two further programs, DES and DCT,
we see the best partitioning algorithm for a particular ma-
chine is reversed. The figure shows that there is no current
”one-fits-all” heuristic and the best heuristic varies across
programs and architectures. Rather than relying on heuris-
tics, we would like a scheme that automatically predicts the
right sequence of fuse and fission operations for each pro-
gram and architecture. In the case of MP3DECODER, this
means we want to select the operations that give the parti-
tioned code in figure 1 (b) for 4-cores and the partitioned
code in figure 1 (c) for 8-cores. However, predicting the cor-
rect sequences of fuse and fission is highly non-trivial given
the unbounded structure of the input program graphs.

In the next section we describe our novel approach. Rather
than predicting the sequence of fuse and fission operations
directly, it tries to predict the right structure of the final
partitioned program. Given this target structure, it then
searches for a sequence of fuse and fission operations that
generates a partitioned program that fits the predicted struc-
ture as closely as possible.

3. PREDICTING AND GENERATING A

GOOD PARTITION
One of the hurdles in predicting the best sequence of fu-

sion and fission operations is that the graph keeps changing
structure after each operation. In figure 3, the second oper-

ation fiss(2.3) would have to be renamed fiss(1.6) if the first
operation (fuse(1.2,1.3,1.4,1.5)) had not taken place. Any
scheme that tries to predict a sequence of fuse and fission
operations has therefore to take into consideration the struc-
ture of the graph at each intermediate stage. The supervised
predictive modelling schemes explored to date are incapable
of managing this [9]. We take a different approach. Instead
of trying to predict the sequence of fuse and fission opera-
tions, we divide the problem into two stages as illustrated
in figure 4:

1. Predict the ideal structure of the final partitioned pro-
gram.

2. Search a space of operation sequences that delivers a
program as close as possible to the ideal structure.

The first stage focuses on determining the goal of parti-
tioning, i.e., the structure of the partitioned program with-
out regard to how it may be actually realised. The second
stage explores different legal operation sequences until the
generated partitioned program matches the goal. This frees
us from the concern of correctly predicting the syntactically
correct sequence of fuse and fission operations. Instead we
can try arbitrary sequences until we reach a partition that
closely matches our goal. The next section describes how
we can predict a good partitioning goal and is followed by
a section describing how we can generate a sequence of fuse
and fission operations to reach that goal.

3.1 Predicting the Ideal Partitioning Structure
- Setting the Goal

We wish to predict the ideal partitioned structure of any
input graph program. In order to cast this as a machine
learning problem, we wish to build a function f which, given
the essential characteristics or features Xorig of the origi-
nal program predicts the features of the ideal partitioned
program Xideal. Building and using such a model follows
the well-known 3 step process for supervised machine learn-
ing [4]: (i) generate training data (ii) train a predictive
model (iii) use the predictor. We generate training data
by evaluating (executing) randomly generated partitions for
each training program and recording their execution time.
The features of the original and best partitioned program
are then used to train a model which is then used to pre-
dict the best ideal partitioning structure for any new unseen
program. One of the key aspects in building a successful pre-
dictor is developing the right program features in order to
characterise the original and goal program. This is described
in the next section. This is followed by sections describing
training data generation, building the predictor using near-
est neighbors and then using the predictor.

3.2 Extracting Features
Rather than trying to deal with unbounded program graphs

as input and outputs to our predictor, we describe the essen-
tial characteristics of such graphs by a fixed feature vector
of numerical values. The intention is that programs with
similarly feature vectors have similar behaviour. We empir-
ically evaluate this assumption in section 6.3. In this work,
we use program features, to characterise a streaming applica-
tion. The set of program features are summarized in table 1.
We extract two sets of those features from the overall stream
graph and the critical path of the program. Thereby, one set

309

2.1

2.3

fuse(1.2,1.3, 1.4, 1.5) 2.2

fiss(2.3)

3.1

3.3

3.2

3.4 3.5

3.6

1.1

1.2

1.4

1.5

1.6

1.3

4.2

4.1

4.3 4.4

4.5

fuse(3.1, 3.2)

ExecutionProgram Source Partitioning Scheduling

Core1 Core3Core2

T
im

e

T1

T2

T3
T4

T5

Core4

T2

T1

T3 T4

T5

Thread4

Thread1

Thread2

Thread3

Thread5

Figure 3: The mapping process can be broken into 2 main stages partitioning and scheduling. Partitioning
is responsible for mapping nodes to threads. This is achieved by a series of fuse and fission operations on the
original source program. At the end of this process, each node of the final graph is allocated to a thread and
so the original graph has been partitioned. Scheduling allocates each of these threads to cores. Scheduling
may be dynamic especially if the number of threads is greater than cores. We focus solely on partitioning.

Optimized

Binary
Frontend

Program

Source

Machine Learning Based Partitioner Backend

Program

IR
Program

IR
Runtime

Execution

Machine Learning Model

Extracted program

features

Partition

Generator
Predicted ideal

partitioning structure

Predicting the ideal structure Searching1 2

Figure 4: Work flow of our compiler framework. The compiler takes in program source code and produce
an optimised binary. In the middle of the compiler is a machine learning based partitioner. The partitioner
firstly predicts the features of an ideal partitioning structure of the input program. This is done by checking
the similarity of the input program features to prior knowledge. Then, it searches the transformation space
to generate a program whose features are as close as possible to the predicted ideal structure.

Program Features

#Filter #Joiner
Pipeline depth Splitjoin width
Avg. unit work Max unit work
Pipeline work Splitjoin work
Computation Computation of stateful filters
Branches per instruction Load/store per instruction
Avg. dynamic rate Max dynamic rate
Avg. commun. rate Computation-commun. ratio
Avg. commun. / unit work Avg. bytes commun. / unit work
Max commun. rate / unit work Work Balance

Table 1: Program features extracted from a stream-
ing application.

represents the overall characteristics of a streaming program
and the other captures characteristics solely of the program’s
critical path. Features are extracted from the stream graph
(i.e., program IR) without running the program, thus the
overhead of extracting features is insignificant.

For a given streaming program, our model firstly extracts
a feature vector, Xorig = [x1

orig, x
2

orig, · · · , xn
orig] from the

original stream graph. Xorig is used to characterise it. We
use the same feature set Xpart to characterise any partition-
ing of a given program. We normalise the features and use
principal component analysis (PCA) [4] to reduce redundan-
cies between features.

3.3 Generating Training Data
Once we have a means of describing the original and par-

titioned programs, we can start generating training data.
Training data are generated by evaluating on average 3000

different randomly generated partitions for a program and
recording the execution time, t. For each program, we also
extract program feature sets, Xorig and Xpart, of both the
program and its partition respectively. Program features
and execution time are put together to form an associate
training dataset T = {(Xi

orig, (Xi,j
part ti,j)}i ∈ 1, · · · , N and

j ∈ 1, · · · , R, for N training programs in which each pro-
gram has R different partitions.

Synthetic Stream Program Generation. One par-
ticular problem encountered in training for new languages
is that the training set is small. There simply is not a large
enough program base with to work. To overcome this prob-
lem, we build a micro-kernel stream program generator to
generate many small training examples, supplementary to
existing benchmarks. This allows us to train our model on
larger data sets. Our stream program generator automati-
cally extracts micro-kernels (i.e., working functions and com-
municating patterns) from any subset of existing StreamIt
programs. It limits the generated programs to a space with
parallel parameters (i.e., pop and push rate, pipeline depth,
split-join width, and loop iteration counts). Then, it gener-
ates a large number of small training examples in which the
parallel parameters and working functions are varied.

The cost of generating new benchmarks can be neglected
because millions of programs can be generated in an order of
minutes. Running programs to generate training data from
potentially thousands programs, however, is prohibitively
expensive. Therefore, we select a limited number of repre-
sentative programs by using a clustering technique that is
also used to choose the ideal partitioning structure (as de-

310

-40 -35 -30 -25 -20 -15 -10 -5 0
-10

-8

-6

-4

-2

0

 Cluster-1 Cluster-2 Cluster-3 Centriods

Figure 5: The feature space is projected into 2 di-
mensions in this diagram for presentation purposes.
Each of the points represents a good partitioning
structure for the LATTICE program. Using clus-
tering there are 3 clusters found the centre of each
is marked as the centroid. Cluster-1 is selected as
it has the best mean speedup. The features around
the centroid of cluster-1 are then averaged and used
as the ideal partitioning structure.

scribed in section 3.4.1). Informally, we do this by examin-
ing the features of the programs generated and selecting only
those which are sufficiently distinct form the existing train-
ing set. Although producing training data takes time, it is
only a one off cost incurred by our model. Furthermore, gen-
erating and collecting data is a completely automatic process
and is performed off-line. Therefore, it requires far less effort
than constructing a heuristic by hand.

3.4 Building a Model
Once we have generated sufficient training data, we are

in a position to build a predictive model. Our model is
based on a straightforward nearest-neighbour classifier [9].
For each training program, we record the features of the
original program Xorig and those of its best found partition
Xideal. When used on a new unseen program, we find the
program from the training set whose features most closely
match the new program’s features. We then simply return
the features, Xideal of the training program as the predicted
best ideal partition for the new program.

In our setting, each program in fact has a number of parti-
tions that give good performance. To capture this we group
the best partitions into regions using clustering. We consider
the cluster with the best average performance and select a
representative candidate as described in the next section.

3.4.1 Selecting the Ideal Partitioning Structure

Each training program has a number of good partitions.
Our task is to select the most useful one, i.e., the partition
that is likely to be good for similar programs. We cluster
the good partitions using a k-means clustering algorithm [4].
In order to determining the right number of clusters K,
we use the standard Bayesian Information Criterion (BIC)
score [26, 31] to decide how many clusters should be selected.
BIC is a measurement of the ”goodness of fit” of a cluster-
ing parameter (i.e., K) to a given data set. The larger the

BIC score, the higher chance that we find a good clustering
number for the data set. We use the BIC formulation given
in [26], which is:

BICj = l̂j −
pj

2
· logR (1)

where l̂j is the log-likelihood of the data when K equals to j,
R is the number of points in the data (i.e., the number of gen-
erated partitions), and pj is the number of free parameters
to estimate, which is calculated as: pj = (K−1)+dK+1 for
a d-dimension feature vector plus 1 variance estimate [32].

l̂j is computed as:

l̂j =
K

X

n=1

−
Rn

2
log(2π) −

Rn · d

2
log(σ̂2) −

Rn − K

2

+Rnlog(Rn/R) + logSn (2)

where Rn is the number of points in the nth cluster, σ̂2 is
the average variance of the distance from each point to its
cluster center, and Sn is the normalised average speedup of
the nth cluster.

We apply the k-means clustering algorithm for the gener-
ated programs by varying the cluster number K. For each
clustering result, we firstly calculate its corresponding BIC

score. We choose a clustering number, Kbest, which gives
us the highest BIC score. After this point, we know the
partition space can be represented by Kbest clusters.

Once we have found the number of clusters, we select the
cluster that has the largest number of good partitions. We
select the 10% of partitions that are close to the cluster
centriod of the selected cluster and normalise their feature
values. The normalised features are considered as the ideal
partition structure.

Figure 5 visually depicts the use of this clustering tech-
nique. Each point in the figure represents a good partition
of the StreamIt benchmark LATTICE. To aid clarity, we
have projected the dimension of the feature space down to
2. For these program there are 3 distinct clusters of good
partitions. Cluster-1 is chosen because it contains 66% of
all the partitions and has the highest mean speedup.

3.5 Using the Model to Predict the Ideal
Partitioning Structure

Once we have gathered training data and built the model
as described above, we can now use the model to predict
the ideal partition structure of a new, unseen program as
shown in figure 4. We firstly extract features of the input
program, normalise its program features using PCA, and use
the nearest neighbour model to predict the ideal partition-
ing structure of the input program. The nearest neighbor
scheme picks a program in the training set, that is the most
similar to the input program. This is done by comparing
the input program’s features to known programs’ features.
Once the nearest neighbor has been selected, we use its ideal
partitioning Xideal as the predicted ideal structure for the
new program. In rare instances, our model may not be able
to find any training programs that are similar enough to the
input program (i.e., no programs in the training set are close
to the new input program). It then simply uses the default
partitioner provided by the compiler.

311

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

1

2

3

4

5

6

7

8

9

S
p
e
e
d
u
p

Distance to the ideal partitioning structure

Figure 6: Separating partition candidates with Eu-
clidean distances. The x-axis represents the distance
to the ideal partitioning structure and the y-axis
represents the speedup relative to the StreamIt de-
fault graph partitioner. Each dot represents a parti-
tion choice and the line represents the mean speedup
of that partition within a distance.

4. SEARCHING AND GENERATING A

PARTITION CLOSE TO THE

PREDICTED IDEAL STRUCTURE
The previous section provides a means to predict the ideal

partition structure without actually running the code. We
now generate new partitions by applying random fuse and
fission operations to the input program’s graph. For each
generated partition, we measure its Euclidean distance from
the predicted ideal structure in the feature space. We repeat
this many times, selecting the partition nearest the ideal
structure.

Figure 6 illustrates the use of distance as a means of de-
termining the best partition candidate for the StreamIt pro-
gram LATTICE. Each dot represents a unique partition.
There are over 3000 different partitions of which only 15%
partitions are better than the partition generated by the
StreamIt default scheme. Given the large number, selecting
a partition to improve is non-trivial. The figure shows that
distance to the ideal structure is a good measure of the qual-
ity of a partition. If we choose a distance of less than 0.5 as
the confidence level, then we will pick a partition that is at
least 5.21 times (6.6 times on average) faster than a partition
generated by the StreamIt default partitioning heuristic.

For the purposes of this paper, we generate on average
3000 potential partitions for each new program, selecting
the one that is nearest to the ideal. We do not execute any
of these programs, merely extract their features and measure
the Euclidean distance. Each partition takes less than 100
ms to generate and evaluate, so is not a significant cost.

5. EXPERIMENTAL METHODOLOGY
This section describes the platforms, compilers, and bench-

marks used in our experiments as well as the evaluation
methodology.

Benchmarks. We use the StreamIt benchmark suite ver-
sion 2.1.1 to evaluate our approach. These applications rep-

resent typical streaming parallel programs containing both
pipeline and data parallelism. On average, each program
contains 46 (up to 168) filters at the IR level.

Compilers. We implemented our machine learning model
as a stream graph partitioner in the StreamIt compiler (ver-
sion 2.1.1). The StreamIt compiler is a source to source
compiler which translates the partitioned stream graph into
C++ code. The Intel C/C++ Compiler (ICC) version 11.0
was used to convert the C++ program to binary. We use
”-O3 -xT -aXT -ipo” as the ICC compiler flags.

Hardware Platform. The experiments were performed
on two multi-core platforms: a 4-core platform (with two
dual-core Intel Xeon 5160 processors running at 3.0GHz and
has 8GB memory) and an 8-core platform (with two quad-
core Intel Xeon 5450 processors running at 3.0GHz and has
16GB memory). The dual-core Xeon 5160 processor has a
4MB L2-cache while the quad-core Xeon 5450 has a 12MB
L2-cache. Both platforms run with 64-bit Scientific Linux
with kernel 2.6.17-164 x86 64 SMP.

Cross-Validation. We use leave-one-out-cross-validation
to evaluate our approach [4]. This means we remove the pro-
gram to be partitioned from the training program set and
then build a model based on the remaining programs. This
also guarantees that our benchmark generator has not seen
the target program before. The trained model is used to
generate partitions for the removed target program. We
repeat this procedure for each program in turn. It is a stan-
dard evaluation methodology, providing an estimate of the
generalization ability of a machine-learning based model in
predicting for an unseen programs.

Synthetic Benchmarks. We generate roughly over 100K
synthetic programs and select around 60 for training. The
benchmark generation and selection process takes less than
15 minutes.

5.1 Comparison
StreamIt has its default partitioning strategy, a sophisti-

cated dynamic programming based partitioning heuristic [37].
All results are presented relative to this default and its pro-
vides a challenging baseline. To provide a wider compari-
son, we also evaluate a recently proposed analytical-based
pipeline parallelism model [25] and an alternative greedy-
based heuristic available within the StreamIt compiler [10].
The analytical-based model finds a suitable parallel map-
ping by predicting the execution time of a given streaming
application. We have implemented the analytical-based par-
titioner in the StreamIt compiler. For each program, the
partitioner generates 50,000 partitions of a single program
and selects a mapping which has the best predictive per-
formance as output. Our scheme, in contrast, predicts the
best structure and selects the partition closest to it, using
an order of magnitude fewer candidates.

5.2 Best Performance Found
In addition to comparison with existing approaches, we

wish to evaluate our model by assessing how close its per-
formance is to the maximum achievable. However, it is not
possible to determine the best, due to the combinatorially
large number of partitions. Instead we randomly gener-
ated 3,000 different partitions for each program and select
the best performing partition as an indication of the up-
per bound on performance that could be achieved if we had
sufficient resources. We call this ”Best-Found” performance.

312

RADIXSORT

FILTERBANK
TDE

SAR
DES

SERPENT

CH.VOCODER

MATMUL

MP3DECODER

IN
SERT.SORT

FFT
DCT

BEAMFORMER FM

MPEG2

VOCODER

LATTIC
E

AVERAGE
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

3.7 6.9

S
p

e
e

d
u

p

 Analytic Greedy Machine Learning

Figure 7: Performance comparison on the 4-core platform for the analytical model, the greedy partitioner
and the ML-based model.

6. EXPERIMENTAL RESULTS
In this section we first report the performance of our ap-

proach against alternative approaches on the 4-core plat-
form. This is followed by a short explanation of the results
generated by different models. Next, we evaluate the accu-
racy of our model in predicting good structures and analyse
what type of partitioning is important for each program. Fi-
nally, we extend our model to a 8-core platform and evaluate
its performance.

6.1 Performance Comparisons

6.1.1 Comparison with other Techniques

Figure 7 shows the performance results for the 4-core plat-
form. On average the analytical-based and the greedy-based
partitioners do not significantly improve over the StreamIt
default dynamic-programming-based partitioner. Our ap-
proach, however, is able to deliver significant improvement
over the defaults scheme with a 1.90x average speedup.

Analytic. On average, the analytical-based model only
achieves 1.07x speedup over the StreamIt default partitioner.
This is not a surprising result because the StreamIt default
partitioner is a strong baseline tuned by hand. It is only
able to improve performance in 4 out of the 17 programs.
It successfully partitions FM resulting in a 3.0x speedup
by coarsening the pipeline. However, it fails to balance the
pipeline of FILTERBANK due to its inability to capture the
complicated communication pattern of the program. This
leads to a greater than 2x slowdown.

Greedy. The greedy partitioner also fails to significantly
improve over the StreamIt default partitioner. On average,
it achieves a 10% performance improvement over the default
partitioner. In approximately half of the programs, it gives a
performance improvement. For example it is able to achieve
an impressive 1.69x and 2.57x speedup on MP3DECODER
and MPEG2 by reducing communication through aggres-
sive fusion. However, it also slows down 9 applications,
particularly in the case of SERPENT and DCT, which are
up to 7.7x slower than the default dynamic programming
approach. This result clearly shows the best partitioning
heuristic varies from program to program.

Our approach. Our machine learning based approach,
on the other hand, can greatly improve performance com-
pared to the default partitioner and gives more stable re-
sults. It achieves better performance in most of the bench-
mark, up to 6.9x for LATTICE. In just one case, MAT-
MUL, we perform worse than the default (as do the other
2 schemes). The backend ICC compiler aggressively auto-

vectorizes the program which has not been captured by our
model. This issue can be solved by adding additional fea-
tures to the model and is the subject of future work.

6.1.2 Comparison vs Best-Found Performance

Although our scheme performs well compared to exist-
ing approaches, it is useful to know whether there is fur-
ther room for improvement. In figure 8, we compare our
scheme against an approximation to the best-found per-
formance. For FM we reach this maximum, but for other
programs such as MP3DECODER, INSERTIONSORT and
VOCODER, there is significant room for improvement. So
although our approach outperformed all prior techniques on
VOCODER, it could have done better. Overall there is a
2.5x average maximum speedup available and we achieve
60% of that maximum performance.

6.2 Explanation
In order to get further insights into the different models,

we investigate partitions generated by different approaches
of three selected StreamIt benchmarks.

RADIXSORT. This application has a regular parallel
structure: it is pure pipeline parallelism; 10 out of its 13
filters have exactly the same computation-communication
ratio. For this program, both the dynamic-programming
based and the greedy-based algorithms give a partition that
has the Best-Found performance. Thus, our approach is not
able to improve their results.

LATTICE. This application contains 36 filters with both
data (i.e., splitjoin) and pipeline parallelism as shown in fig-
ure 9 (a). Finding a good partition for it is certainly nontriv-
ial and different approaches give different answers. Figures 9
(b) to (e) illustrate the partitions given by four partitioners:
the StreamIt default, the greedy-based, the analytical-based,
and our ML-based partitioners, respectively. The StreamIt
default partitioner aims to form a balanced pipeline and
generates a partition with four nodes. This partition out-
performs the solutions given by the greedy-based and the
analytical model-based partitioners, which generate parti-
tions with more threads at the scheduling stage bringing
extract runtime overhead. In contrast, our approach gener-
ates a coarse-grain stream graph, which has relatively fewer
number of threads and lower communication cost. As a
result, the ML-based approach achieves better performance
than other techniques. By examining this application, we
discover that the computation of LATTICE is relatively
small compared to the communication cost on the 4-core
platform. Therefore, a good partitioning strategy will try

313

RADIXSORT

FILTERBANK
TDE

SAR
DES

SERPENT

CH.VOCODER

MATMUL

MP3DECODER

IN
SERT.SORT

FFT
DCT

BEAMFORMER FM

MPEG2

VOCODER

LATTIC
E

AVERAGE
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

S
p

e
e

d
u

p

 Machine Learning Best-Found 4.4 4.4 6.9 8.1

Figure 8: The performance of our approach vs the best performance found out of on average 3000 executions
per program on the 4-core platform.

Spliter

(push=1,

pop=1,peek=1)

Joiner

(pop=2,peek=2)

(push=1,

pop=1,peek=1)

(push=256)

(a)

(push=256)

(push=4,

pop=2,peek=2)

(push=2,

pop=2,peek=2)

(pop=2,peek=2)

(push=8)

(push=16,

pop=2,peek=2)

(push=4,

pop=2, peek=2)

(push=4,

pop=2,peek=2)

(pop=1,peek=1)

(push=8)

(pop=1,peek=1)

Counter

...

Spliter

Joiner

Identity Identity

LatFilt

Spliter

Joiner

Identity Identity

LatFilt

Replicate 6x of

CompStage

CompStage

CompStage

Spliter

Joiner

Identity Identity

LastStage

(b) (c) (d) (e)

Figure 9: The stream graph (a) and partitions generated by different approaches for LATTICE. Each box
represents a filter and the communication rate of each filter is denoted. The dynamic programming based
partitioner gives (b), the greedy partitioner gives (c), the analytical model gives (d), and our ML based
approach gives (e) by coarsening the stream graph to reduce communication overhead.

to coarsen the stream graph to reduce communication over-
head. In this case, our approach identifies the program char-
acteristics of LATTICE and applies a appropriate heuristic
to aggressively coarsen the stream graph.

VOCODER. The stream graph of VOCODER has over
120 filters containing large splitjoin sections and long-stage
pipelines. Unlike LATTICE’s partitioning strategy, merely
considering coarsening the stream graph is not the right
choice for this application. Figures 10 (a) and (b) corre-
spond to the partitions given by the StreamIt default scheme
and our approach respectively. This time, our ML-based ap-
proach takes a different strategy. In order to reduce commu-
nication overhead, it first coarsens those small computation
kernels. At the same time, it exploits data parallelism in
the critical path (which contributes to around 40% of the
total computation) and generates a 9-node partition. When
compared with the Best-Found solution, a 13-node partition,
our ML-based model could be smarter by predicting a more
aggressive partitioning goal.

As indicated by these examples, we can see that differ-
ent partitioning strategies should be applied to applications

with different program characteristics (section 6.3.3 gives de-
tailed discussion about the program characteristics). Essen-
tially, the analytical model and the two StreamIt partition-
ers are ”one-size-fits-all” strategies. They can be improved
by a program-aware partitioning scheme. Developing such a
scheme by hand is, however, extremely hard. Our approach,
on the other hand, solves this problem by leveraging machine
learning techniques. It uses prior knowledge to select and
apply the program-specific partitioning strategy according
to program characteristics of the target program, resulting
in better performance than hardwired heuristics.

6.3 Analysis of Results
In this section we analyse the behaviour of our approach.

We first evaluate how accurate the nearest neighbour model
is. This is then followed by an evaluation of how useful our
feature space is in distinguishing good partitions. Finally,
we examine the structure of the best partitions found and
examine what optimisation criteria are important in deliv-
ering performance.

314

(push=1)

(push=34,

pop=1,peek=33)

(push=2,

pop=2, peek=2)

(push=153,

pop=102, peek=102)

Spliter

(push=4,

pop=6, peek=10)

Joiner

(push=4,

pop=3, peek=3)

(pop=26496,

peek=26496)

(push=34)

(push=2,

pop=2,peek=2)

(push=136,

pop=102, peek=136)

(pop=26496,

peek=26496)

(a) (b)

Figure 10: Partitions generated by the StreamIt
default method (a) and our approach (b) for
VOCODER. Each box represents a filter in which
the communication rate is denoted. The StreamIt
default scheme exploits purely pipeline parallelism.
Our ML-based approach exploits both pipeline and
data parallelism.

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

F
e
a
tu

re
s
 o

f
th

e
 p

ro
g
ra

m

Features of the ideal partitioning structure

Figure 11: Correlation between program features
and the ideal partitioning structure for each of the
17 benchmarks. This figure shows there is strong
correlation between program features of a program
and its ideal partitioning structure. Note that the
feature vector of each program has been reduced
into a single value to aid visualization.

6.3.1 Correlation of Program Features

The intuition behind our predictive model is that similar
programs will have similar ideal partitioning structures as
long as we are able to have features that capture similarity
accurately. Figure 11 confirms this assumption. It shows
the program features of the ideal partitioned program vs
the features of the original program for each of the bench-
mark. The original multi-dimensional feature vectors have
been projected into a single value for each program to aid
clarity. This figure shows a strong correlation between the
program features and the ideal partitioning structure. We
can quantify this by using the correlation coefficient [4]. It
takes a value between -1 and 1, the closer the coefficient is to
+/ − 1, the stronger the correlation between the variables.
It is 0.9 in our case , which indicates a high correlation be-
tween program features and the ideal partitioning structure.
The means the premise for the nearest neighbour model is
valid.

RADIXSORT

FILTERBANK
TDE

SAR
DES

SERPENT

CH.VOCODER

MATMUL

MP3DEOCDER

INSERT.SORT
FFT

DCT

BEAMFORMER FM

MPEG2

VOCODER

LATTICE
0

2

4

6

S
p
e
e
d
u
p

8.09

Figure 12: Performance of mappings around the
predicted ideal partitioning structure. The distance
of each program to the predictive ideal partitioning
structure is evaluated with weighted Euclidean dis-
tance. The x-axis represents the program and the y-
axis represents the speedup relative to the StreamIt
default mapping. The central box denotes the mean
speedup and the top and bottom of each box repre-
sent the highest and the lowest speedup using our
predictive model.

0 5 10 15 20 25 30 35 40 45 50
20

25

30

35

40

45

50

55

60

65

A
v
g

.
p

e
rf

o
rm

a
n

c
e

 r
e

la
ti
v
e

 t
o

 t
h

e
 m

a
x
im

u
m

 (
%

)

Distance to the predicted ideal partitioning structure

Figure 13: Average performance relative to upper
bound vs distance from ideal partition. This fig-
ure shows the average performance of a partition as
a function of its distance from the predicted ideal
structure. As the distance decreases, performance
improves.

6.3.2 Distance-based Mapping Selection

The box plots in figure 12 summarises the performance of
partitions around a predicted ideal partitioning structure.
It shows the performance of partitions with a normalised
distance of less than 0.5 to the predicted ideal partition-
ing structure, as used by our scheme. The diagram shows
that regions around the predicted ideal result in good per-
formance. The top and the bottom of the ”whisker” of each
program represent the highest and the lowest speedup found
in the region around the predicted ideal. For the majority
of programs we obtain significant performance improvement
if we can generate a mapping that is closer to the predicted
ideal partitioning structure. The one exception is MAT-
MUL, as seen in figure 8. If we zoom in on VOCODER,
we see that the average speedup obtained in this region is
2.7. The lower value is 1.9 and the upper is 4.4. If we look
at figure 8, we see that our scheme selects a partition that
achieves just a 1.9 speedup - the lower bound, while the best
performance is 4.4 - the upper bound. This shows that our

315

C
H

.V
O

C
O

D
E

R

S
A

R

R
A

D
IX

S
O

R
T

F
IL

T
E

R
B

A
N

K

S
E

R
P

E
N

T

M
A

T
M

U
L

-B
L

O
C

K

IN
S

E
R

T
.S

O
R

T

B
E

A
M

F
O

R
M

E
R

M
P

E
G

2

D
E

S

D
C

T

T
D

E

V
O

C
O

D
E

R

M
P

3
D

E
C

O
D

E
R

L
A

T
T

IC
E

F
F

T

F
M

#Threads generated

Computation-communication
ratio

Pipeline balance

#Filters have 50% work
to overall

Maximum filter-work
to overall

Critical-path work to overall

Avg pop-comm ratio

Avg pop rate

Avg push rate

Coarsen splitjoin

Work-balance
in splitjoin

Figure 14: A Hinton diagram showing the partition-
ing objectives that are likely to impact performance
of each benchmark. The larger the box, the more
likely an partitioning objective affects the perfor-
mance of the respective program.

scheme could improve if was smarter in choosing the ideal
structure within a good cluster for this program.

Figure 13 shows how the performance of a partitioning
structure varies as a function of its distance from the pre-
dicted ideal partitioning structure. This diagram averages
the results across all benchmarks and shows that partitions
near the predicted ideal give the best average performance.
The figure demonstrates that Euclidean distance from the
predicted ideal structure is a useful means of discriminating
good partitions from poor.

6.3.3 Importance of Partitioning Choices on
Performance

Section 2 has shown that the best heuristic varies across
programs. We now consider the importance of specific par-
titioning characteristics for each program on the 4-core plat-
form. We have considered a number of characteristics that a
partitioning algorithm may wish to consider in making parti-
tioning decisions e.g. communication computation ratio, av-
erage push rate etc. Figure 14 shows a Hinton diagram illus-
trating the importance of a number of different partitioning
objectives on the performance of each program. Intuitively,
this information gives us an indication of those character-
istics on which an optimising heuristic should focus. The
larger the box, the more significant the issue for that pro-
gram. The x-axis denotes the programs, the y-axis denotes
partitioning criteria. Figure 14 shows that each of these ob-
jectives has an impact on each program. The computation
to communication ratio is important for all programs and ex-
tremely important for the CHANNELVOCODER and SAR.
Having a balanced pipeline, however, is less important over-
all. Some programs are sensitive to all of these objectives,
e.g. RADIXSORT while for some program e.g. FFT, one
issue, coarsen the splitjoin sections, is of overwhelming im-
portance. This diagram illustrates just how hard it is for a
heuristic which typically focuses on one or two objectives,
to find the best partitioning for all programs.

6.4 Adapting to a New Platform
In order to evaluate the portability of our model, we eval-

uated it on a 2x Quad-core Intel Xeon (8-core) platform.
Training data was collected from the new platform and used
to train the model. Note that we used the same program
features and methodology to train the model as used on the
4-core platform. Due to time constraints we had to use rel-
atively fewer partitions for each training program. This will
affect the performance of our model.

Figure 15 shows the performance of the different approaches
on the 8-core platform. The most striking result is that
for some applications, the greedy partitioner does better
than it does on the 4-core platform. For DES and FFT,
the greedy partitioner achieves 1.28x and 1.78x speedup re-
spectively compared to the default dynamic programming
partitioner when on the 4-core platform, it slowed down
these programs to 70% of the partition generated by the
StreamIt default. The greedy partitioner improves the per-
formance of 10 benchmarks on this platform, up to 4.9x for
VOCODER, with an average 1.2x speedup but gives signifi-
cant performance slowdowns for 5 programs. The analytical-
based model also gives unstable results. It gives an average
speedup but only gives noticeable improvement on 4 pro-
grams. It, however, gives a significant slow down on FIL-
TERBANK by more than a factor of 2.

In contrast to those two approaches, our machine learn-
ing approach is more stable across programs, with just one
small slowdown in the case of RADIXSORT. On average
we achieve 1.8x improvement across the benchmarks. With
the correct amount of training data, this is certain to im-
prove even further. Compared to the analytical model and
the greedy heuristic, our model is stable not only across pro-
grams but also across platforms. This example demonstrates
the portability of our machine learning approach.

7. RELATED WORK
Stream Graph Partitioning. There is a significant vol-

ume of prior work dealing with stream graph partitioning.
Liao et al. build an affine partitioning framework to map
streaming parallelism onto multi-core processors [20]. The
ACTOES compiler [24] uses a static graph partitioning al-
gorithm to map stream programs onto streaming proces-
sors. Navarro et al. [25] construct an analytical model to
determine parallelism configurations for pipeline parallelism
which contains data parallel pipeline stages. Stream graph
modulo scheduling (SGMS) orchestrates execution of StreamIt
applications for the IBM Cell processor [16]. SGMS uses inte-
ger linear programming (ILP) formulations to perform parti-
tion by aiming to overlap the communication and computa-
tion. Similar ILP solver-based approach has also been used
to generate partitions for StreamIt applications targeting on
GPUs [39]. Formulating ILP models, however, requires ex-
pert knowledge on the underlying architecture. Finding a
solution under certain constraints for the ILP formula can
be time-consuming too. Recently, MacroSS [13] has been
proposed to exploit macro-level SIMD for streaming applica-
tions on SIMD processors. MacroSS groups filters together
to utilize the SIMD engine, which achieves good performance
on Intel Core i7 processor. Rather than developing a hard-
wired heuristic by hand, we use machine learning techniques
to build a portable predictive model to perform stream graph
partitioning based on prior knowledge.

316

RADIXSORT

FILTERBANK
TDE

SAR
DES

SERPENT

CH.VOCODER

MATMUL

MP3DECODER

IN
SERT.SORT

FFT
DCT

BEAMFORMER FM

MPEG2

VOCODER

LATTIC
E

AVERAGE
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

3.5

4.9 4.3

S
p

e
e

d
u

p

 Analytic Greedy Machine Learning 4.5 4.3

Figure 15: Performance comparison on the 8-core platform for the analytical model, the greedy partitioner
and the ML-based model.

Runtime Scheduling for Streaming Parallelism. A
Runtime scheduler uses dynamic information to execute a
partitioned stream application (graph). Gordon et al. ex-
ploited coarse-grain task, data and pipeline-level parallelism
incorporating with a dynamic task scheduler. Their ap-
proach firstly uses a greedy partitioner to partition a stream
graph, then uses a runtime scheduler to execute the parti-
tioned streaming graph onto multi-cores [11]. FlexStream [14]
is a runtime adaptation system that dynamically re-maps an
already partitioned stream graph according to the number
of processors available for heterogeneous multi-core systems.
Aleen et al. [1] combine profiling information and execution
time estimation to predict the dynamic behavior of a stream
application. This profiling information then is used to dy-
namically adjust the pipeline to achieve load balance. Our
machine learning based approach automatically adapts to
the behavior of the runtime scheduler through training. Our
approach is orthogonal to existing and future scheduling ap-
proaches, which significantly reduces the efforts of porting
a stream graph partitioner to new architectures or runtime
systems.

Machine Learning Based Compilation. Machine learn-
ing has been successfully applied to optimising both se-
quential and data parallel programs. Stephenson et al. [34]
have used genetic algorithms to tune the compiler heuris-
tics for sequential programs. Similar approaches also have
been used to find either good loop transformations [27] or
compiler flags [15]. In contrast to these online-learning algo-
rithms, our predictor learns from prior knowledge obtained
by off-line training, hence, it has a much lower overhead
in deployment. McGovern and Moss [23] use supervised
learning to decide the scheduling order of instruction pairs.
Stephenson and Amarasinghe [22] used supervised classifi-
cation techniques such as K-Nearest Neighbour and Support
Vector Machine to find the loop unroll factor. Both ap-
proaches use off-line training but only target on sequential
programs. In our previous work [41], we have built machine
learning models to map data parallelism onto multi-cores.
The Qilin compiler [21] divides parallel loops between CPUs
and GPUs using regression-based prediction. All approaches
focus on fixed targets, such as per loop or a fixed number
of tasks. This work is distinct from previous ones in that
we target on streaming parallelism which contains both data
and pipeline parallelism and the prediction target (e.g., the
transformation sequence) is unbounded.

Automatic Program Generation. Automatic program
generators have demonstrated their success either in gener-

ating ”similar” sequential programs from existing benchmark
suites [40] or in optimising domain-specific applications [6].
Our approach, on the other hand, aims at generating small
”different” streaming parallel programs as training examples
for machine learning models.

8. CONCLUSIONS
This paper has presented an automatic and portable com-

piler based approach to partitioning streaming programs for
multi-cores, providing a significant performance improve-
ment over hardwired heuristics. Using machine learning
techniques, our compiler predicts the ideal partition struc-
ture of a streaming application, allowing us to quickly search
the transformation space without running the code. In ad-
dition to the predictive model, we have developed a micro-
kernel streaming program generator which automatically gen-
erates small training examples for the predictive model. We
demonstrated our approach by mapping StreamIt applica-
tions onto two multi-core platforms. On average, we achieve
a 1.90x speedup over the StreamIt default scheme on a 4-core
platform. Compared to a recently proposed analytical-based
model, our approach achieves on average a 1.79x perfor-
mance improvement. When our approach was ported to an
8-core machine, we were able to achieve a 1.80x improvement
over the StreamIt default. Future work will consider incor-
porating our compiler framework with runtime task sched-
uler to dynamically exploit task, data and pipeline paral-
lelism.

9. ACKNOWLEDGMENTS
We would like to thank members of Compiler and Archi-

tecture Design Group at Edinburgh University, especially,
Björn Franke, Alastair Murray, Christian Fensch and Geor-
gios E. Tournavitis, for their kind help and constructive
feedback. We gratefully thank the anonymous reviewers for
their very useful comments that help to improve the qual-
ity of this paper. We acknowledge the use of the StreamIt
compiler (version 2.1.1) for experiments. This work has
made use of the resources provided by the Edinburgh Com-
pute and Data Facility (ECDF). (http://www.ecdf.ed.ac.uk/).
The ECDF is partially supported by the eDIKT initiative
(http://www.edikt.org.uk).

317

10. REFERENCES
[1] F. Aleen, M. Sharif, and S. Pande. Input-driven

dynamic execution prediction of streaming
applications. In PPoPP, 2010.

[2] K. Asanovic, R. Bodik, and J. Demmel et al. A view
of the parallel computing landscape. Commun. ACM,
52(10), 2009.

[3] G. Bikshandi, J. Guo, and D. Hoeflinger et al.
Programming for parallelism and locality with
hierarchically tiled arrays. In PPoPP, 2006.

[4] C. M. Bishop. Pattern Recognition and Machine
Learning. Springer, 2006.

[5] T. N. Bui and C. Jones. Finding good approximate
vertex and edge partitions is NP-hard. Inf. Process.
Lett., 42(3), 1992.

[6] S. Chellappa, F. Franchetti, and M. Püeschel.
Computer generation of fast fourier transforms for the
cell broadband engine. In ICS, 2009.

[7] D. E. Culler, R. M. Karp, and D. Patterson et al.
LogP: a practical model of parallel computation.
Commun. ACM, 39(11), 1996.

[8] W. C. Dan, W. yu Chen, and Parry Husbands et al. A
performance analysis of the berkeley upc compiler. In
ICS, 2003.

[9] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern
Classification (2nd Edition). Wiley-Interscience, 2000.

[10] M. I. Gordon, W. Thies, and S. Amarasinghe.
Exploiting coarse-grained task, data, and pipeline
parallelism in stream programs. In ASPLOS, 2006.

[11] M. I. Gordon, W. Thies, and M. Karczmarek et al. A
stream compiler for communication-exposed
architectures. In ASPLOS, 2002.

[12] H. Hofstee. Future microprocessors and off-chip sop
interconnect. Advanced Packaging, IEEE Transactions
on, 2004.

[13] A. Hormati, Y. Choi, and M. Woh et al. MacroSS:
Macro-simdization of streaming applications. In
ASPLOS, 2010.

[14] A. H. Hormati, Y. Choi, and M. Kudlur et al.
Flextream: Adaptive compilation of streaming
applications for heterogeneous architectures. In PACT,
2009.

[15] K. Hoste and L. Eeckhout. COLE: compiler
optimization level exploration. In CGO, 2008.

[16] M. Kudlur and S. Mahlke. Orchestrating the execution
of stream programs on multicore platforms. In PLDI,
2008.

[17] M. Kulkarni, K. Pingali, and B. Walter et al.
Optimistic parallelism requires abstractions. In PLDI,
2007.

[18] Y. Kwok and I. Ahmad. Static scheduling algorithms
for allocating directed task graphs to multiprocessors.
ACM Comput. Surv., 31(4), 1999.

[19] E. A. Lee and D. G. Messerschmitt. Synchronous Data
Flow. Proc. IEEE, 75(9), 1987.

[20] S. Liao, Z. Du, and G. Wu et al. Data and
computation transformations for brook streaming
applications on multiprocessors. In CGO, 2006.

[21] C. Luk, S. Hong, and H. Kim. Qilin: exploiting

parallelism on heterogeneous multiprocessors with
adaptive mapping. In MICRO, 2009.

[22] S. Mark and A. Saman. Predicting unroll factors using
supervised classification. In CGO, 2005.

[23] E. Moss, P. Utgoff, and J. Cavazos et al. Learning to
schedule straight-line code. In NIPS, 1997.

[24] H. Munk, E. Ayguadé, and C. Bastoul et al. ACOTES
Project: Advanced Compiler Technologies for
Embedded Streaming. International Journal of
Parallel Programming, 2010.

[25] A. Navarro, R. Asenjo, and S. Tabik et al. Analytical
modeling of pipeline parallelism. In PACT, 2009.

[26] D. Pelleg and A. W. Moore. X-means: Extending
K-means with Efficient Estimation of the Number of
Clusters. In ICML, 2000.

[27] L. Pouchet and C. Bastoul et al. Iterative
Optimization in the Polyhedral Model: Part II,
Multidimensional Time. In PLDI, 2008.

[28] K. Ramamritham and J. A. Stankovic. Dynamic task
scheduling in hard real-time distributed systems.
IEEE Softw., 1(3), 1984.

[29] V. A. Saraswat, V. Sarkar, and C. von Praun. X10:
concurrent programming for modern architectures. In
PPoPP, 2007.

[30] V. Sarkar. Automatic partitioning of a program
dependence graph into parallel tasks. IBM J. Res.
Dev., 35(5-6), 1991.

[31] G. Schwarz. Estimating the dimension of a model.
Ann. Statist, 6(2), 1978.

[32] T. Sherwood, E. Perelman, and G. Hamerly et al.
Automatically characterizing large scale program
behavior. In ASPLOS, 2002.

[33] R. Stephens. A survey of stream processing. Acta
Informatica, 34(7):491–541, 1997.

[34] M. Stephenson, S. Amarasinghe, and M. Martin et al.
Meta optimization: improving compiler heuristics with
machine learning. SIGPLAN Not., 2003.

[35] J. Subhlok, J. M. Stichnoth, and David R. O’hallaron
et al. Exploiting task and data parallelism on a
multicomputer. In PPoPP, 1993.

[36] B. Thies, M. Karczmarek, and S. Amarasinghe.
StreamIt: A language for streaming applications. In
CC, 2001.

[37] W. Thies. Language and Compiler Support for Stream
Programs. Ph.D. thesis, Massachusetts Institute of
Technology, Cambridge, MA, 2009.

[38] G. Tournavitis, Z. Wang, and B. Franke et al. Towards
a holistic approach to auto-parallelization - integrating
profile-driven parallelism detection and
machine-learning based mapping. In PLDI, 2009.

[39] A. Udupa, R. Govindarajan, and M. J.
Thazhuthaveetil. Software Pipelined Execution of
Stream Programs on GPUs. In CGO, 2009.

[40] L. Van Ertvelde and L. Eeckhout. Dispersing
proprietary applications as benchmarks through code
mutation. In ASPLOS, 2008.

[41] Z. Wang and M. F. O’Boyle. Mapping parallelism to
multi-cores: a machine learning based approach. In
PPoPP, 2009.

318

