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ABSTRACT
Contactless wireless sensing without attaching a device to the tar-
get has achieved promising progress in recent years. However, one
severe limitation is the small sensing range. This paper presents
WIDESEE to realize wide-area sensing with only one transceiver
pair. WIDESEE utilizes the LoRa signal to achieve a larger range of
sensing and further incorporates drone’s mobility to broaden the sens-
ing area. WIDESEE presents solutions across software and hardware
to overcome two aspects of challenges for wide-range contactless
sensing: (i) the interference brought by the device mobility and
LoRa’s high sensitivity; and (ii) the ambiguous target information
such as location when employing just a single pair of transceivers.
We have developed a working prototype of WIDESEE for human tar-
get detection and localization that are especially useful in emergency
scenarios such as rescue search, and evaluated WIDESEE with both
controlled experiments and the field study in a high-rise building.
Extensive experiments demonstrate the great potential of WIDESEE

for wide-area contactless sensing with a single LoRa transceiver pair
hosted on a drone.

CCS CONCEPTS
• Human-centered computing → Ubiquitous and mobile com-
puting; • Hardware → Communication hardware, interfaces and
storage.
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1 INTRODUCTION
Besides traditional data communication functions, in recent years,
wireless signals have been employed for sensing and have enabled
diverse new applications including indoor navigation [22, 51, 54],
health monitoring [9, 39], and human-computer interactions [14].
Wireless sensing relies on analyzing the characteristics of the signal
reflected from the target to understand the contextual information of
one’s interest (e.g., localization). A wide range of wireless signals
have been exploited for contactless sensing (i.e., without attaching
any device to the target objects), including ultrasound and various
types of radio frequency (RF) signals (e.g., WiFi and RFID). The RF
signals attract particular attention in real-world sensing applications
since they do not require to secure a Line-of-Sight (LoS) between
the device and targets as opposed to conventional camera-based
systems [37], and have stronger penetration capability compared to
acoustic signals [43, 50].

Although promising, one evident issue with existing RF-based
sensing is its limited sensing range, which hinders its applications
in wide-area sensing such as disaster rescue. This is mainly because
the signals reflected from the target, which contain information
related to the context of the target, are much weaker than the direct-
path signals between the transmitter and receiver. The fact that
wireless sensing captures information from the reflected signals
makes the sensing range much smaller compared to when the signals
are used for communication purposes. For example, the current
WiFi-based systems are only capable of performing sensing in a
room-level range (i.e. approximately 3-6m) [26, 51], whereas RFID
or mmWave-based systems show an even smaller sensing range of
1-3m [27, 47, 55].

Recently, efforts have been made to extend the contact sensing
range of RF signals [11, 24, 56, 57]. Ashutosh et al. introduced an
approach to employ multi-hop nodes to track the sensor attached tar-
gets that are located deep inside a building structure [11]. In another
example, Ma et al. leveraged drones to relay sensing information,
which extends the sensing range from 5m to 50m [57]. Employing
multiple devices or multi-hop transmission schemes can increase
the sensing coverage range. However, these approaches require a
complicated process of sensing infrastructure deployment and could
be vulnerable to changes or failure of even a single device, which
make them unsuitable for emergency rescue applications.

In this paper, we present WIDESEE– a contactless wireless sens-
ing system based on the emerging LoRa technology with only a
single transceiver pair. WIDESEE is designed to push the bound-
ary of wide-area sensing. Our key insight is that the low-power,
long-range wireless communication capability of LoRa offers a long
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propagation distance (i.e., several kilometers) and a strong penetra-
tion capability through obstacles, which in turn can be employed to
significantly increase the sensing range compared to other wireless
technologies. In this work, as a proof-of-concept, we explore the
opportunities and limitations of the LoRa technology for non-contact
human detection and localization in wide-area scenarios. To further
increase the sensing area coverage, we leverage the mobility of a
drone to carry the transceiver and move around the target area to
perform wireless sensing. As we demonstrate later in this paper, we
successfully realize building-scale, through-wall sensing to detect
and localize human targets. We believe the proposed study is partic-
ularly useful for human target sensing (detection and localization)
for applications in urban search and rescue missions.

Translating our high-level idea into a functional system, however,
is nontrivial due to a number of challenges. First, the larger sensing
range of LoRa also means the interference range is also larger due
to the higher signal receiving sensitivity. Second, a transceiver pair
equipped with a single antenna does not provide us sufficient infor-
mation regarding the target location since the number of unknown
variables is greater than that of the constrained equations for local-
ization. Third, although employing a drone can increase the sensing
coverage, the vibration introduced by the drone during its operation
(i.e., flying) affects the resultant signals and accordingly the target
sensing performance.

To address the aforementioned challenges in wide-range sensing,
we introduce solutions across the software and hardware stacks. To
tackle the interference brought by LoRa’s high sensitivity, we re-
design the antenna system and the sensing algorithm. Specifically,
we employ a compact, reconfigurable directional antenna at the re-
ceiver to narrow down the target sensing region. Our system can
quickly (i.e., within 10ms) switch the radiation pattern with a narrow
beamwidth of 48◦. Such a design allows WIDESEE to stay focus
on the area of interests and reduce the impact of interference. To
further eliminate the multipath effect within the sensing area, we
take a unique approach to first extract the direction-related infor-
mation from available time-series of amplitudes and then use the
information to isolate the target path from the interfering multipath.
As a departure from the commonly used angle-of-arrival (AoA) or
time-of-flight (ToF)-based methods, our design avoids the pitfall of
relying on accurate channel phase information and large bandwidth,
which are unfortunately not available on LoRa.

To reduce the ambiguities in localization, we build analytic mod-
els that can predict and determine target locations. This is based
on our key observations that the speed of the moving target (e.g.,
humans) is relatively constant and the resulting trajectory is smooth
within a short period of time (e.g., < 1 s). We model the signal char-
acteristics of the (vibration) noise and human target movements in
frequency domain and filter out the vibration artifacts on the received
signals to improve the sensing accuracy.

We integrate the proposed techniques to implement a working
prototype and deploy it to detect and localize human targets in three
different real-world environments: an open square, an underground
parking garage, and a high-rise building structure with a size of
20 × 42 × 85 m3. Our experimental results show that WIDESEE

can effectively detect and localize human targets using just one
transceiver pair. For 90% of the test cases, the localization error
of WIDESEE is within 4.6 m. Such accuracy would allow one to

Figure 1: Motivation example of WIDESEE: a building-scale hu-
man target sensing scenario.

identify at which room the human target locates in many typical
building structures. This is a promising result considering we use
only a single transceiver pair, and the target moves most of the time
in a large environment. We hope this study can encourage further
research in exploiting wide-area wireless sensing in detecting and
tracking human targets to enable applications like disaster rescue
search and security surveillance [48]. The main contributions of this
paper can be summarized as followings:

• We present a contactless system for sensing human targets in
a wide area using just one transceiver pair, by combining the
agility of drone with the long-range propagation characteristic
of LoRa.

• We introduce new algorithms and design methodologies across
the software and hardware stacks to effectively tackle a series
of interference issues when applying LoRa and a flying drone
for wide-range sensing, and to address the sensing ambigu-
ity issue when only one single transceiver pair is employed.
The proposed techniques are generally applicable, and can be
applied to other wireless sensing tasks.

• We demonstrate, for the first time, building-scale, through-
wall contactless wireless sensing can be achieved with just
one LoRa transceiver pair together with a drone.

2 BACKGROUND AND OVERVIEW
2.1 LoRa Technology
LoRa offers a long communication range for up to several kilome-
ters [45] with the ability to decode signals as weak as −148 dBm.
While the ability of decoding weak signals is beneficial for long
range communications, it makes LoRa more likely to suffer inter-
ference from uninterested area in sensing. Even using a directional
antenna at the receiver, there still exist strong multipath effects [30]
within the detectable area that greatly affect the sensing accuracy.
Much effort has been made to similar problems associated with mul-
tipath effects in other RF signals (e.g., WiFi [49] or RFID [58]) or
acoustic signals [43], which are based on AoA or ToF information
of the received signals. However, such information requires accu-
rate channel phase readings and clock synchronization between the
transmitter and receiver, both of which are unavailable on LoRa.

In this work, instead of making efforts on obtaining AoA or ToF
to tackle the multipath effects, we consider a approach to leverage
the received (albeit susceptible) signal strength (i.e., amplitude) for
effectively addressing the inherent issue of multipath effects. This is
described in Section 3.3.
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Figure 2: Overview of WIDESEE. We use a drone to carry the
LoRa transceiver pair and its control system. The data are sent
back to the remote data processing platform to perform real-
time target detection and localization.

2.2 Motivation and Problem Scope
As depicted in the conceptual illustration in Figure 1, WIDESEE

could be used to target emergency scenarios, such as disaster res-
cue and terrorist search in (high-rise) building structures. In these
scenarios, identification of the presence of human targets and their
locations is of high importance, but doing so is challenging because
(a) the localization sensing infrastructure (e.g., surveillance cameras)
may not be readily available or has been destroyed, and (b) visual
inspection of human targets is restricted if not impossible. WIDESEE

is designed to offer decision supports in such difficult settings.
In our application of human sensing, we aim to achieve the fol-

lowing two goals. The first is to detect the existence of human targets.
The second is to identify the target’s location if a presence is de-
tected. We do not consider a multiple-device or multi-hop transmis-
sion scheme, because such a strategy requires a careful and complex
setup process, which is often infeasible in emergency situations. As
a proof-of-concept, WIDESEE is designed to be capable of detecting
the presence of multiple human targets located in different rooms in
the same building, but only localizing one target at a time. We leave
the simultaneous localization of multiple targets as our future work.

2.3 Overview of WIDESEE
WIDESEE is a wide-range contactless human target sensing system
built upon a single LoRa transceiver pair. The transceiver pair (both
the transmitter and receiver) is carried by a drone so that WIDESEE

can scan and sense a large area by flying the drone. Having a small,
lightweight design for WIDESEE is essential to maintain a good
endurance for the battery-powered drone.

WIDESEE operates by first transmitting the LoRa signal, and then
capturing and analyzing the received resultant signal from the direct
signal path and reflections off the target and surrounding objects.
To detect the presence of a human target, WIDESEE models how
a human activity like breathing, waving or ambulating affects the
power spectral density (PSD) of the received signal. WIDESEE then
tries to locate a detected human target by extracting and analyzing
the target’s direction-related information. As depicted in Figure 2,
WIDESEE consists of three innovative components:

• A compact, reconfigurable antenna system to reduce the in-
terference from uninterested areas. To prevent moving targets
from being missed, the antenna should be able to adjust its
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Parasitic 
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Figure 3: The fabricated antenna system on the receiver side.

direction and radiation pattern quickly. Our design is detailed
at Section 3.1.

• A data collection and antenna control system, which includes
a LoRa transceiver pair, a data collection subsystem, and a
drone. The drone carries the LoRa transceiver pair and the
data collection subsystems to fly around the target region. The
collected LoRa signal data are sent back to a laptop (through
a LTE network) to be processed on the ground. The antenna
control system employs an Arduino board carried by the
drone to configure the antenna radiation pattern accordingly.
The details are described in Section 3.2.

• A target detection and localization system, which runs on
a data processing platform, i.e., a laptop in our case. The
system analyzes the collected data to detect and localize the
human target. This is discussed in detail in Section 3.3.

3 SYSTEM DESIGN OF WIDESEE
WIDESEE leverages LoRa’s long communication range and high
penetration capability for sensing targets that are within a wide area
or deep inside building structures. As discussed in Section 2.1, this
advantage also brings in more interference from uninterested objects
due to the larger sensing range. Overcoming this limitation requires
novel design methodologies, analysis and processing algorithms.

3.1 Reconfigurable Antenna System
To reduce the interference, we look for innovations at the antenna
side. Our first intuition is to employ a directional antenna at the
receiver to narrow down the sensing region. However, commonly
used horn directional antennas such as RFMAX [5] have a fixed
radiation pattern and mechanically rotating the antenna orientation
to focus on a region is too slow. Furthermore, the beamwidth offered
by a horn antenna is usually not narrow enough [5]. An alternative is
to use a phased-array antenna that can change the radiation pattern
by adjusting the amplitude and phase of each antenna element, to
achieve fast scanning with narrower beams [19, 25]. However, there
is a problem for using a phased-array antenna with LoRa. The LoRa
signal has a wavelength of 33 cm and to achieve a 25◦ beamwidth,
the linear array will have a size of approximately 2m. The resulted
antenna design is not only expensive, but also too bulky to be fitted
on a domestic drone.

We wonder if we could bring together the advantages of horn
antenna (small size and low cost) and phased array (high resolution
and scanning speed). In answer, we adopt a reconfigurable antenna
approach [12], which is capable of switching the radiation pattern
and frequency properties through adjusting its internal current flow
distribution to offer a narrow beamwidth.

Specifically, we choose to use a parasitic-planar-patch antenna [29]
for our reconfigurable antenna design. Figure 3 shows our recon-
figurable antenna implementation that is used at the receiver side,
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Figure 4: Frequency and radiation properties of our reconfig-
urable antenna system. Here (a-c), (d-f) and (g-i) respectively
represent the frequency property, radiation pattern and nor-
malized radiation pattern of mode1-3.

Table 1: Properties of our antenna system and a similar-sized
RFMAX [5] – a popular horn directional antenna.

Frequency Gain Beamwidth Size
range (MHz) (dBic) (at 3 dB) (cm3)

WIDESEE (mode 1) 896-926 9.2 48◦
WIDESEE (mode 2) 892-928 8.8 45◦ 20 × 50 × 1
WIDESEE (mode 3) 896-926 9.2 48◦
RFMAX 902-928 9 70◦ 26 × 26 × 5

which consists of a driven patch in the center and two parasitic
patches on both sides. Beam steering is achieved by manipulating
the status of the parasitic patches to act either as reflectors (when
shorted to ground) or directors (when not shorted to ground). The
radius of each patch is 78 mm. Two shorting pins are shorted to
ground from each parasitic patch, to ensure that the currents can
flow from the parasitic patches to the ground according to the RF
switching configuration. Two SMP1345 PIN diode switches are sol-
dered on the parasitic patch layer close to each of the shorting pins
and the RF/direct-current (DC) input. Each diode occupies a small
space of around 2 × 2mm. The PIN diode is achieved by using a
resistance (1.5 Ω) and a capacitor (1.5 pF ) for ON and OFF states,
respectively. The resulting antenna system is small (20 × 50 cm) and
has a comparable weight to a similar-sized horn directional antenna
(< 1 kд), but has the advantage of quickly switching the radiation
patterns. It costs us less than 300 USD to build the antenna and its
control system, and we expect the price to be significantly reduced
during massive production.

Figure 4 shows the frequency and radiation properties of our
antenna system. Our current implementation supports three different
radiation modes. We use an Arduino board to switch between the
three modes in a round-robin fashion, where switching occurs every
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Figure 5: We use a DJI S1000 to carry the LoRa transceiver
pair (a) and the data collection/control subsystem (b).

10ms. We empirically determined this switching frequency which is
sufficient for sensing human targets. This is based on the observation
that the human body movements often have a frequency less than
10 Hz [17].

Table 1 compares our antenna system (in three different modes)
against a similar-sized RFMAX [5] – a widely used horn directional
antenna. From the table, we see that the frequency range and gain of
our antenna system for the three modes are comparable to those of
RFMAX, but our design has the advantages of offering quick radia-
tion pattern switching and a narrower beamwidth. These advantages
make our antenna system more suitable for target sensing with LoRa.
Note that, the total radiation angle range of our system is twice
RFMAX’s, and the radiation pattern switching is much quicker (
i.e., 10ms) than horn antenna which requires mechanical rotation
for direction change.

3.2 Data Collection and Antenna Control System
As depicted in Figure 2, we use a consumer drone to carry the
transceiver pair and its control and data collection modules.

3.2.1 Transceiver pair. Our LoRa transceiver pair is shown in
Figure 5 (a). We use an off-the-shelf device, Semtech SX1276 [6],
with an omnidirectional antenna as the LoRa signal transmitter. The
transmitter sends signals in a continuous mode at 890MHz frequency
– the best working frequency of our reconfigurable antenna system.
At the receiver end, we use LimeSDR-mini (a software defined radio
board [4]) as the LoRa gateway to collect signal at a sampling rate
of 250 KHz through running the GNU radio software development
toolkit [2]. We connect the board to our reconfigurable antenna (see
Section 3.1) through one of its RF connectors, and to an Android
smartphone (with 8G of RAM and 128G of storage) via a USB 3.0
port.

The receiver end works as follows. After initializing the LimeSDR-
mini board, the antenna control software running on the Arduino
board continuously switches among the three radiation modes of
the antenna, at a frequency of 10 ms. The LimiSDR-mini board
collects the signal samples at each radiation mode, which are read by
the smartphone to be transferred (labeled with the radiation modes)
to a laptop via LTE connection for data processing. In this way,
WIDESEE can detect and localize targets within an interested area
covered by each radiation mode. Note that it is possible for our target
detection and localization algorithms to run on the smartphone or an
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(a) Without human target. (b) With a moving human target.

Figure 6: Comparison of the PSD of the received signal when
there exists no human target (a) and a moving target (b). The
PSD patterns in two scenarios differ significantly. WIDESEE ex-
ploits this observation to detect the presence of human targets.

embedded device to remove the need of data transfer, and we leave
this as our future work.

3.2.2 Drone System. We use a DJI S1000 drone [7] to increase
the area a single transceiver pair can effectively cover. As illustrated
in Figure 5 (b), the LimeSDR-mini, smartphone, Arduino board are
put on top of the drone and are powered by a 5200 mAh portable
power bank with a 2.4 A output. We employ the collision avoidance
system provided by DIJ to avoid drone collision with obstacles. The
drone is controlled by software running on a laptop, programmed
through the DJI software development kits. One limitation of the
drone system is that it can not operate for a long time when loaded
with the devices and one battery charge can support around 15
minutes of flight. Our future implementation will look into reducing
the drone’s load by running the data collection and antenna control
software on a single computing device (e.g., the Arduino board),
which can be powered directly by the drone’s battery. Multiple
drones can be utilized to alleviate this power-hungry issue.

3.3 Target Detection and Localization System
We develop a set of algorithms to process the collected LoRa signal
data to detect and localize human targets. The process of detection
and localization works as follows. We first pre-process the received
signal to remove the noises caused by the drone’s vibration artifacts.
We then exploit the power spectrum density (PSD) of the processed
signal to detect the presence of human targets. The PSD is calculated
as the Fast Fourier transform of signal amplitudes’ self-correlation.
Note that our detection mechanism can detect the presence of target
no matter one or multiple targets are present in the sensing area.
After detecting the presence of a moving target, we apply the lo-
calization algorithm to estimate the location of the target whose
reflection is strongest at that time (note that during localization stage,
we let the device hover in place). With the device mobility, we can
detect and locate multiple targets successively. As we have previ-
ously discussed, WIDESEE needs to effectively handle the multipath
effects and location ambiguities brought in by using only one LoRa
transceiver pair.

3.3.1 Vibration noise elimination. Vibrations of a flying drone
inevitably introduce noise to the received LoRa signals. To remove
the introduced noise, we exploit the observation that the motion
artifacts brought by a drone are within a frequency range between
60Hz and 150Hz, which is different from the lower frequency range
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Figure 7: Frequency distribution of signal changes caused by
three states of a human target. Different states lead to different
signal frequency distributions.

of a human body movement (< 10 Hz). Therefore, we first use a low-
pass filter (i.e., second-order Butterworth low pass filter with a cutoff
frequency of 10 Hz) to remove the high-frequency motion artifacts
in the frequency domain and then convert the filtered signal back to
the time domain to be processed in the next stage. Our evaluation in
Section 4 shows that this is a simple yet effective strategy.

3.3.2 Human target detection. Human activities like hand wav-
ing and walking will alter the wireless propagation paths and lead
to the change of signal amplitude at the receiver [10]. Prior work
shows that when no human target is present, the received signal
can be approximated as the superposition of constant signals and
the white Gaussian noise, yielding an invariant PSD with time [41].
By contrast, the PSD of the received signal resulted from a moving
human target, will lead to fluctuations on the measured signal. As
an example, consider Figure 6 drawn from our own experiments.
It illustrates the difference in the PSD with and without a moving
human target. When no human target is present (Figure 6 (a)), the
PSD of the received signal remains stable with time and close to
0 Hz, while when a moving target presents (Figure 6 (b)), the PSD
fluctuates at low frequencies (0 − 10 Hz). Our work exploits this
signal characteristic to detect the presence of a human target – if the
measured PSD frequency and its variance are both below a threshold
(empirically set to 0.1Hz in our case), we consider there is no human
target; otherwise, we conclude that someone (with movements) is in
the sensing area.

In this work, we focus on detecting human targets with large
movements: ambulating or waving in-place. We are also able to de-
tect a stationary breathing target when there is no obstacle between
the transceiver pair and the target, or the obstacle is thin (see Sec-
tion 4.2.3). Figure 7 illustrates the normalized PSD of the reflected
signals of these three states (ambulating, waving and stationary) from
a human target in a controlled environment. The diagram shows that
different states exhibit different characteristics in the frequency do-
main, which can be used to identify and differentiate these states.
In particular, human breath and waving present strong, dense PSD
with a frequency range of 0.1-0.6 Hz and 1-4 Hz, respectively. By
contrast, the PSD distribution of an ambulating human target is more
spread apart, mainly due to the human target’s randomized ambula-
tory trajectory pattern and uncorrelated movements of multiple body
parts.

3.3.3 Ambulating Target Localization. Once an ambulating hu-
man target is detected, we focus on identifying the location of the
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Figure 8: (a) shows the setup of moving target localization. Sim-
ilar to the linear virtual array constructed by moving receiver.
The moving target also can emulate a linear array. (b) presents
the superposition signal of multiple paths.

target. One of the technical challenges in LoRa-based target local-
ization is that the multipath in LoRa is more severe than that in
other signals (e.g., WiFi). Even though we utilize the narrower beam
antenna at the receiver, the multipath within the sensing area can
be still substantially strong, which negatively impacts target local-
ization. To address the multipath issue for localization, previous
work has investigated various techniques, such as analyzing the
AoA information [52], frequency hopping based on accurate chan-
nel phase measurement [35, 40], and comparing ToF that requires
large bandwidth and tight transceiver synchronization [33]. Unfortu-
nately, these techniques are not applicable to our system because the
maximum bandwidth of LoRa is only 500 KHz, and the asynchro-
nism between LoRa node (Tx) and gateway (Rx) makes it difficult
to extract stable phase readings from the received signal. Also, it
is particularly difficult to achieve synchronization between LoRa
node and gateway due to the cheap oscillator adopted. Because of
the chirp modulation, LoRa can tolerate high frequency offset for
commutation so high-accuracy oscillator is not needed.

In this work, we propose an amplitude-based anti-multipath method
to localize a moving target. The foundation of our method is to ex-
tract direction-related information from signal amplitudes, inspired
by a recent work by Karanam et al. [31]. By using the direction-
related information for localization, we have the opportunity to
remove the multipath effect that however is not addressed in [31].
In the following subsections, we first describe the basic concepts
behind extracting the direction-related information when a target is
moving. Then, we answer how to obtain target location information
from the extracted direction-related information. Finally, we propose
the solution to handle multipath.

Direction-related parameter estimation. Here we first describe
the framework for estimating direction-related parameter in device
moving scenario (target does not move), which can be used to deduce
the direction-related parameter in target moving case (device does
not move).

Considering a scenario in which we have one receiver that receives
signals from K different sources. When the receiver moves along
a straight line at a speed v, it can emulate a linear array. We can
define the incoming angle of each signal source in far-field as θk ,
k = 1, 2, ...,K . Then, the signal received from the k th source at time

t can be expressed as xt,k = at,ke
j(µk+ 2πvt

λ cosθk ) [21], where at,k
is the amplitude of the signal and µk is the signal phase at the initial
time point (i.e., t = 0). Then, the signal received at the receiver at
time t is a superposition of K signals, which can be written as:

y(t) =
K∑
k=1

at,ke
j(µk+ 2πvt

λ cosθk ). (1)

Let us denote R(τ ) as the self-correlation of the received signal
amplitudes at delay τ . Then, R(τ ) can be expressed as [21, 31]:

R(τ ) = CA +
K−1∑
k=1

K∑
j=k+1

Ck, j · cos
(
2π

vτ

λ
(cosθk − cosθ j )

)
, (2)

whereCA is a constant term depending on the total signal power and

Ck, j =
πa2t,ka

2
t, j

16
∑K
k=1 a

2
t,k

, where a2t,k is the signal power of k th signal. It

is noteworthy that R(τ ) is consisted of a total of K (K−1)
2 harmonics.

Each harmonic’s frequency is related to the cosine of two sources’
AoA (i.e., θk ,θ j , and k = 1, 2, ...,K , j = 1, 2, ...,K), which is given
by:

f̃k, j =
v

λ
|cosθk − cosθ j |. (3)

Note that cosθk and cosθ j are unknowns we are trying to obtain the
values. These frequencies f̃k, j can be obtained by the frequency
estimation technique, such as the fast Fourier transformation of
amplitudes’ self-correlation followed by a peak magnitude detection.

For the target moving and transceiver fixed scenario shown in
Figure 8 (a), the resultant signal is composed of reflection (Tx →

target → Rx) from an ambulating human target and direct path (Tx
→ Rx). The resultant signal at time t can thus be written as:

y(t) = ase
j µs + ade

j
(
µd+ 2πvt

λ (cosθT +cosθR )
)
, (4)

where as and µs are the amplitude and phase of the direct path signal,
ad is the amplitude of the signal reflected from the moving target,
µd is the initial phase (t = 0) of the reflected signal, v is the moving
speed of the target, θT and θR are two angles marked in Figure 8 (a).

Equation (4) is a special case of Equation (1) with 2 sources (K =
2), cosθ1 = 0 and cosθ2 = cosθT +cosθR . The moving target can syn-
thesize a transmitter array. We put cosθ1 and cosθ2 into Equation (3)
to obtain the following:

f̃1,2 =
v

λ
|0 − (cosθT + cosθR )|, (5)

since v, θT and θR are unknowns in practice, we jointly estimate the
direction-related parameter |v(cosθT + cosθR )| as f̃1,2λ according to
Equation (5).

Localization ambiguity avoidance. By utilizing the |v(cosθT +
cosθR )| estimate from only one transceiver pair to localize the target,
there exist severe localization ambiguities that stem from three as-
pects: (1) the absolute value symbol | | applied to v(cosθT + cosθR );
(2) unknown distance d between the target and the Tx-Rx LoS link
as shown in Figure 8 (a); and (3) unknown speed v and direction
θ0 of target movement. We show the localization result of a special
case (θ0 = 0) in Figure 11 (a). We can see that even with θ0 = 0 to
simplify the problem, there still exist ambiguities (the areas with red
color). So it is difficult to obtain the target’s true initial location.
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(a) Target moves towards LoS. (b) Target moves away from LoS.

Figure 9: The changing trend of v(cosθT + cosθR ) estimates at
various target moving directions θ0. It can be seen that the
changing trend of v(cosθT + cosθR ) estimates from the 1st to
mth is always decreasing no matter the target moves towards
LoS (0◦ < θ0 < 90◦) or moves away from LoS (90◦ < θ0 < 180◦).

In this paper, we solve this problem based on the facts that the
target’s moving trajectory is smooth and the velocity is a constant
during a short period of time (e.g., < 1 s). Specifically, we utilize
multiple consecutive estimates of v(cosθT + cosθR ) with a sliding
window of size w , and each estimation process requires samples
collected in a time window of size τ . w and τ are empirically set
as 0.25 s and 1 s in our system. To reduce the computational time,
we reduce the sample rate from 250 KHz to 1 KHz for PSD calcula-
tion. We aim to solve five unknown parameters: [θT 1,θR1,θ0,d1,v],
where θT 1 , θR1 and d1 are the initial values of θT , θR and d respec-
tively. Note that within a short period of time, v and θ0 can both be
considered as constants while θT , θR and d are changing. During the
process of target movement within a short period of time, we keep
estimating the 3 changing variables. For themth estimates, we can
have the following two equations bellow:{

v(cosθTm + cosθRm ) = ±( f̃1,2λ)m
dm (tan(θ0 + θRm ) + tan(θTm − θ0)) = L

. (6)

Note that ± can be removed due to our observation as shown
in Figure 9. We find that the changing trend of v(cosθT + cosθR )
estimates from the 1st tomth are always decreasing. When the target
moves towards transceiver pair, the values of cosθT and cosθR (0◦ <
θT < 90◦, 0◦ < θR < 90◦) are positive and the values decrease with
angles θT and θR increasing. When the target moves away from the
transceiver pair, the values of cosθT and cosθR (90◦ < θT < 180◦,
90◦ < θR < 180◦) are negative and the values again decrease with
angles increasing. So we delete another set of estimates that do not
satisfy the condition of decreasing from the 1st tomth estimates.

Consider the fact of trajectory smoothness and speed constancy
over a short period of time, we can add the following constraints:

θTm ≈ θT 1 + (m − 1)α
θRm ≈ θR1 + (m − 1)β
dm ≈ d1 −vτ (m − 1)cosθ0

, (7)

where α and β are constant but unknown. By incorporating Formula 7
into Formula 6, we find that when m reaches to 4, the number of
equations (2m = 8) is larger than the number of unknowns (a total
of 7 with 5 original unknowns and 2 newly introduced unknowns).
Thus we are able to solve the unknowns with only 4 estimates of
|v(cosθT + cosθR )| as shown in Figure 10.

Since the equations are non-linear that can not be solved directly,
an intuitive choice is to use Approximate Search algorithm. To
avoid the local optimum issue and reduce time overhead, we adopt
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Figure 10: Four adjacent estimates of direction-related parame-
ter |v(cosθT +cosθR )|. The estimates are the normalized frequen-
cies corresponding to the peaks of PSD plots.
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Figure 11: Localization ambiguity avoidance. The heatmap ex-
hibiting the likelihood that how a partitioned grid is likely to be
the initial location of the target. The coordinates of Tx and Rx
are (0, 0) and (10, 0), the ground truth is highlighted with black
square. From (a), we can see all grids of the reddest color result
in the same value of |v(cosθT + cosθR )|, resulting severe localiza-
tion ambiguities.

Particle Swarm and Global Search from Matlab Global Optimization
Toolbox to achieve global optimum search for the set of non-linear
equations. The principle is to obtain an initial search value close to
the solution using particle swarm, then limit the objective function
with fmincon’s non-linear constraints, and finally use Global Search
to obtain the solution. The computational complexity of the search
algorithm is O(N × M), where N is the dimension of the particle
swarm and M is the number of iterations. Figure 11 (b) shows that
the initial localization result with our ambiguity avoidance scheme
is close to the ground-truth.

Multipath interference elimination. Consider a typical multipath
scenario shown in Figure 8 (b), we can see that the received signal
at the receiver is a superposition of multiple signals, which can be
written as:

y(t) = ase
j µs + ade

j(µd+ 2πvt
λ (cosθT +cosθR )

+ a′de
j(µ′d+

2πvt
λ (cosθ ′

T +cosθ
′
R ),

(8)

where ad , µd , θT and θR are the amplitude, initial phase (t = 0),
angle parameters of the direct target reflection (Tx→target→Rx),
respectively. To simplify representation, here we approximate the
indirect target reflection (Tx→target→wall→Rx) as a new direct
reflection from a virtual target (Tx→virtual target→Rx), with am-
plitude a′d , initial phase (t = 0) µ ′d , direction parameters θ ′T and θ ′R .

In such scenario, the f̃ λ value set has |v(cosθT + cosθR )| as well as
|v(cosθ ′T + cosθ

′
R )| and |v(cosθT + cosθR ) −v(cosθ ′T + cosθ

′
R )| com-

ponents. Since the resultant static component (contains direct path)
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Figure 12: Multipath interference presentation. The figure shows that past AoA based multipath removal solution fails when the
interfering object is close to the connecting line between target and receiver/transmitter (like at location B). Our approach has the
ability to mitigate the problem.
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Figure 13: Localization errors of using past (5.1 m) and
our (1 m) multipath elimination approaches, when an interfer-
ing object locates at point B as shown in Figure 12 (a).

is much stronger than the reflections, we can lock the two dominant
f̃ λ estimates as |v(cosθT + cosθR )| and |v(cosθ ′T + cosθ

′
R )|.

To distinguish the target corresponding |v(cosθT + cosθR )| value
from the |v(cosθ ′T + cosθ

′
R )| estimate shown in Figure 12 (b-c), ex-

isting solutions (e.g., Dynamic-Music) exploit the fact that the direct
target reflected path is stronger than the indirect target reflected
path [34, 46, 52] due to the shorter path of former, so they con-
sider the f̃ λ value of larger magnitude as the direct target reflection
resulted |v(cosθT + cosθR )|.

This approach can be effective when the interfering object (at
location A in Figure 12 (a)) is far away from the connecting line
between target and receiver/transmitter. We can see that the four
estimates of |v(cosθT + cosθR )| decrease monotonically as shown
in Figure 12 (d) when there is one interfering object at location A.
Figure 12 (b) shows the PSD plots and the position ( f̃ λ) of the peak
is the estimate. We can see that for 4 consecutive time window, the
( f̃ λ) is decreasing. These results are similar to the case when there
is no interfering object. However, when the interfering object (at
location B in Figure 12 (a)) is close to the connecting line between
target and receiver/transmitter, the |v(cosθT +cosθR )| estimates show
remarkable shifts as shown in Figure 12 (c) and (d) and thus fail to
localize the target. To mitigate this problem, instead of taking the
peak value position f̃ λ shown in Figure 12 (c) as |v(cosθT + cosθR )|,
we take the average of two positions corresponding to largest and
second largest peak values as |v(cosθT + cosθR )| if we find the four
estimates are not decreasing monotonously and the second largest
peak value is larger than 50% of the largest peak value. Figure 12 (d)
shows that by using our methods to obtain the new |v(cosθT +

(a)

(b)

(c)

Figure 14: Evaluation scenarios. We evaluate WIDESEE in an
open square (a), an underground parking garage (b), and a mid-
dle floor of a 17-floor building (c). The testing area is on one side
of the transmitter-receiver line in all of the experiments.

cosθR )|, the 4 estimates now decrease monotonously and match
the no-interfere estimates much better than those obtained with the
Dynamic-Music method. The localization error of our method (1m)
is much lower than that of Dynamic-Music method (5.1m).

4 EVALUATION
4.1 Experimental Setup and Roadmap
We performed two sets of field experiments to evaluate WIDESEE in
detecting and localizing human targets: field experiments without a
drone and field experiments with a drone.

4.1.1 Field experiments without a drone. We would like to
provide a quantitative evaluation first to justify our design choices,
and to identify the research opportunities and limitations of LoRa
sensing. To this end, we evaluate how the distance between transmit-
ter and receiver affects the sensing range of LoRa in Section 4.2.1.
In Section 4.2.2, we report the performance of our antenna design
for detecting moving human targets and compare it with two alter-
native designs using omni- and horn-directional antennas. We then
evaluate LoRa’s penetration capability in detecting three different
human activities in Section 4.2.3, before reporting the localization
accuracy of our system in Section 4.2.4. Finally, in Section 4.2.5, we
evaluate the impact of the human target’s walking speed on detection
and localization accuracy. Controlled experiments were performed
on the ground for detecting a single moving human target with the
LoRa transceiver pair placed 1m above the ground. Later in the field
study, we use the drone to carry the transceiver pair.
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Figure 15: Impact of the transmitter-receiver distance on the de-
tectable distance (sensing range). WIDESEE can detect a mov-
ing object with a distance to the transceiver pair of up to 53m
in an open square.

4.1.2 File study with a drone. In the field study, we use a drone
to carry the LoRa transceiver pair to detect and locate a human target
in the building shown in Figure 14 (c). We report the performance
for detecting the presence of human targets and the accuracy for
localizing a human target with different drone speeds. The results
are given in Section 4.3.

4.1.3 Evaluation metric. We calculate the accuracy for detecting
the presence of a human target as:

Accuracy =
1
C

C∑
c=1

(1 − |
Hm,c − Ht,c

Ht,c
|),Hm,c ,Ht,c = {0, 1}

where C is the number of tests, Hm,c and Ht,c are the outputs of
WIDESEE and the ground-truth in the cth test respectively.

4.2 Field experiments without a drone
4.2.1 Sensing range under different transmitter-receiver dis-
tances. In this experiment, we varied the transmitter-receiver dis-
tance, i.e., the distance between the transmitter and the receiver,
from 1 m to 59 m at a step size of 2 m. The tests were conducted
in the open square shown in Figure 14 (a). In each transceiver pair
setting, we asked a target to walk along the vertical bisector of the
transceiver pair 100 times with a walking distance of 3m each time,
starting from a randomly chosen position. Note that we moved the
starting point further from the transceiver pair each time, until we
fail to detect the user at that point. We consider a position to be
detectable if we can correctly detect the user at that position for over
90% of the time. We calculated the distance between each detectable
position and the middle point of the transceiver pair link to find the
largest-possible sensing distance (i.e., sensing range) for a given
setting.

Figure 15 shows how the transmitter-receiver distance affects the
sensing range of WIDESEE. We see that the sensing range in general
grows as the transmitter-receiver distance increases. However, it
reaches a plateau with a detectable distance of 53m. This suggests
that WIDESEE can achieve a sensing range of 53m for a moving
target in a relatively ideal environment (an open square). Such a
sensing range is a significant improvement over WiFi, RFID and
mmWave-based systems, which have a sensing range below 6m [47,
51, 55]. However, we believe there is a potential to further increase
this sensing range with careful signal processing considering the
kilometer-level communication range and we leave it as important
future work.
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Figure 16: Comparing the detection accuracy (a) and region
(b) between our approach and alternative directional antennas
with a similar size. Our antenna design gives the best trade-off
between the detection accuracy and range.

4.2.2 Evaluation of our antenna system. This experiment is
designed to evaluate the performance of our antenna system in hu-
man target detection. We compare our design against two alternative
designs which use an omnidirectional [1] and a horn directional
(RFMAX [5]) antenna with a similar size. Our testing area is an
open square with a size of 42 × 48 m2 depicted in Figure 14 (a).
We divided the testing area into a grid of 224 blocks, 3 × 3m2 for
each block. Like the previous experiment, we asked a human target
to choose any block and then move within the block naturally. We
ensure that each block was tested at least once.

Figure 16 shows that our design presents the best trade-off be-
tween the detection accuracy and area coverage. In this experiment,
we report the number of detectable blocks. Note that this is different
from the evaluation in Section 4.2.1, where we are interested in
the longest-possible distance for detecting a target that is always
on the perpendicular bisector of the transceiver pair. In this exper-
iment, most of the blocks are not on the perpendicular bisector of
the transceiver pair. As we increase the transmitter-receiver distance
beyond 36m, we see a decrease in the number of detectable blocks.
This is mainly due to the directionality of the receiver antenna.

While RFMAX, the horn directional antenna achieves the second-
best detection accuracy, it can detect the least number of blocks.
The omnidirectional antenna, on the other hand, can cover more
blocks, but it achieves the poorest detection accuracy due to its
high sensitivity to the surrounding interference. The sensing range
achieved by our antenna is relatively large due to the signal focusing
and radiation direction switching, and it delivers a much higher
detection accuracy for all settings. The better detection accuracy of
our approach is largely attributed to its narrower beam, which in turn
leads to a stronger signal and at the same time less interference from
non-target objects.

4.2.3 Penetration test. We also evaluate WIDESEE’s ability to
penetrate the walls. Experiments were conducted in the underground
garage as shown in Figure 14 (b) and the second floor of our test
building shown in Figure 14 (c). Our evaluation includes four set-
tings – no wall and wall made of reinforced concrete with three
different thicknesses (26 cm, 52 cm and 94 cm) between the target
and the transceiver pair. In the through-wall experiment, we placed
the transceiver pair 1.5m away from the wall.

Figure 17 shows the results. As expected, the thinner the obstacle
between the target and the transceiver pair, the deeper WIDESEE



SenSys ’19, November 10–13, 2019, New York, NY, USA Chen et al.

No wall

1 1.5 2 2.5 3 3.5

Transmitter-receiver distance (m)

0

5

10

15

20

25

D
e
te

c
ta

b
le

 d
is

ta
n

c
e
 (

m
)

Ambulating Waving Stationary

Wall thickness = 26cm

1 1.5 2 2.5 3 3.5
0

5

10

15

20

25
Wall thickness = 52cm

1 1.5 2 2.5 3 3.5
0

5

10

15

20
Wall thickness = 94cm

1 1.5 2 2.5 3 3.5
0

2.5

5

7.5

10

Figure 17: Penetration test. WIDESEE can detect a stationary human target who is behind a wall with a thickness of 52cm, and
WIDESEE can detect a moving/walking target deeper inside a wall.
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Figure 19: Impact of target
moving speed. The target’s
moving speed has little im-
pact on detection, but it af-
fects localization.

can successfully detect the target. We observe the target’s activity
also has a significant impact on the detectable distance. If the tar-
get is ambulating or waving, WIDESEE can successfully detect the
target up to 15m and 13m, respectively. WIDESEE can also detect
a stationary target with just respiration. However, the detection dis-
tance is limited and depends on the thickness of the wall. This is
not surprising, as the smaller the activity and the thicker the wall is,
the weaker the received signal strength will be. For our experiments,
a 20 cm increase in the wall’s thickness would reduce the received
signal strength by around 29 dB. Nonetheless, the results show that
WIDESEE can accurately detect a human target moving or waving
deep inside the building.

4.2.4 Localization accuracy in different multipath environ-
ments. We report how multipath impacts localization accuracy in
this section. Our evaluation environments are the open square (Fig-
ure 14 (a)) and basement parking garage (Figure 14 (b)). As can be
seen from Figure 14 (b), the basement is supported by many pillars
and hence has rich multipath. The test areas in both environments
are of the same size (10× 25m2), and we set the transmitter-receiver
distance as 10m. We divided the testing area into 125 blocks, where
each block has a size of 2 × 1m2. For each block, a target was asked
to walk following predefined straight lines that have 0◦, 30◦, 45◦,
60◦ or 90◦ degrees with respect to the transmitter-receive line. For
each line, the user walked for around 2 s, starting from the center of
a block. Figure 18 plots the cumulative distribution function (CDF)
of the localization error across our 125 experimental trials. This
diagram shows that for over 50% of our test cases, the localization

error is within 2.1m and 2.7m in the open square and the basement,
respectively. Such accuracy would be good enough for locating a
human target in many application scenarios, demonstrating the great
potential of sensing using a single LoRa transceiver pair.

We conduct another experiment to show the tracking accuracy
of our system in a smaller area. This experiment was performed
in a smaller room located in the building shown in Figure 14. The
room has a size of 8 × 10 m2. In this experiment, the transmitter-
receiver distance is set as 6m. The target was asked to walk along the
trajectory of five letters “BCIMO”. The recovered trajectories (dots)
and the ground-truth trajectories (solid lines) are shown together in
Figure 20. WIDESEE achieves a median localization error of 52 cm,
which is comparable to the 32 cm error achieved in IndoTrack - a
state-of-art WiFi tracking system with dense deployment [51]. This
experiment shows that WIDESEE is able to track the target at higher
accuracy in a smaller-size area.

4.2.5 Impact of the target’s moving speed. This experiment
studies the effect of the target’s walking speed on detection and
localization. We consider three walking speeds: slow (0.5± 0.2m/s),
average (1 ± 0.2 m/s) and fast (2 ± 0.2 m/s). We conducted the
experiments in the open square shown in Figure 14 (a).

Figure 19 shows that the target’s moving speed has little impact
on target detection, but it does affect the localization accuracy. We
observe a localization error of 1.7m, 2m, and 2.5m when the target
was moving at slow, average, and fast speeds respectively. This is
largely attributed to the body motions (e.g., arm swing) – the faster
the walking speed is, the more drastic the body movement will
be – a more drastic body movement makes it harder to satisfy the
conditions that we use for localization (see Equation 7).

4.3 Building-scale Field Study
In this field study, we employ WIDESEE with a drone (see also
Figure 2) to perform building-scale sensing. The task is to detect and
track a human target located on the 9th floor of a 17-floor building
structure with a size of 20×42×85m3 (Figure 14 (c)). Note that this
new building had no occupant at the time of our experiment. The
thicknesses of the concrete walls and glass windows are 40 cm and
5 cm, respectively. The transceiver pair was carried by a drone in this
experiment. The distance between the transmitter and the receiver
is 2m. Ten student volunteers participated in this study, serving as
the target. Figure 21 shows the experimental setup. The students
were arranged into three groups to perform stationary (breathing) (2
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Figure 20: Tracking results in a smaller room with size of 6 × 8 m2. The median tracking error of WIDESEE is 52 cm, which is
comparable with a state-of-the-art that utilizes two WiFi transceiver pair[51].

Figure 21: Building-scale experimental
setup.
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Figure 22: Target detection accuracy in
building-scale field study, with various
drone’s flying speeds.
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Figure 23: CDF plot of the localization
error given by our and Dynamic-Music’s
multipath elimination schemes.

students), waving (4 students) and walking (4 students) activities,
and are located in rooms on the same floor. We manually controlled
the drone to fly to an initial position of the 9th floor, and used the
software-based control module (Section 3.2.2) to control the drone’s
fly. We varied the flying speed of the drone in the experiments.

4.3.1 Detecting human presences. Figure 22 shows the detec-
tion accuracy for each human target who was walking and waving.
When the drone was flying at a low speed of 1 ± 0.2m/s, WIDESEE

can successfully detect 98% and 96% of the human targets who were
walking and waving respectively. As expected, the detection accu-
racy decreases as the drone’s speed increases, but WIDESEE is still
able to detect the target most of the time when the target was walking
or waving. WIDESEE is unable to detect the stationary (breathing)
target in this study when the device is on a drone and the target is
pretty far away (> 5 m) from the device with a 40 cm wall made
of reinforced concrete in between. How to improve the detection
accuracy for stationary human targets with respiration sensing is
one important direction of our future work. However, our current
implementation would already be useful for disaster rescue to de-
tect conscious survivors, many of whom tend to wave to attract the
attention of rescuers.

4.3.2 Localization accuracy. Once we have detected a moving
target, we hover the drone for 2 seconds to collect the target move-
ment information, and apply the localization algorithms described
in Section 3.3.3 to estimate the target position. Figure 23 compares
the localization error of our approach with Dynamic-Music [52]. As
we can see, our approach delivers a better localization accuracy over
Dynamic-Music. It reduces the localization error from 8m to 4.6m
for over 90% of the test cases. Although the 4.6m localization error
is intuitively large, it allows us to identify which room or roughly

which area of a building a human target is located. This is partic-
ularly useful in disaster rescue where we critically need to narrow
down the search area for survivors.

5 DISCUSSIONS
As the first attempt in applying LoRa signals for sensing, there is
room for improvement and further work. We discuss a few issues
here.

Non-moving target localization. We are able to detect non-moving
human target through sensing his/her respiration or in-place activ-
ities such as waving. Note that the sensing range of through-wall
respiration sensing is still limited, since the signal attenuation caused
by walls is significant and the signal variation induced by respiration
movement (around 5mm chest displacement) is small and can easily
be buried in noise. We plan to explore the feasibility of utilizing
beamforming technology [24, 53, 59] to amplify the weak reflected
signal to increase the respiration sensing range in the future. Careful
signal processing with an antenna array is another promising direc-
tion to increase the sensing range as demonstrated in Farsense [56].

Target localization with device movements. In this paper, we can
localize the target with a single pair of transceiver when the target
is moving. Note that our system can not localize the target when
the sensing device is also moving. This is because we remove the
dynamic multipath interference based on the fact that dynamic mul-
tipath reflected twice is much weaker than direct target-reflected
signal. However, if the transmitter/receiver is also moving, the origi-
nal static path will also become dynamic path, which may be stronger
than the direct target-reflected signal and then we can not get rid
of the effect of dynamic multipath in this case, resulting in large
localization errors.
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Multiple-target sensing. We are not able to detect and localize
multiple targets simultaneously since the target-reflected signals get
mixed together and it is extremely challenging to separate the mixed
signals with a limited channel bandwidth. In our future work, we
plan to employ antenna array to focus the transmission power at one
direction and also exploit the blind signal separation algorithm [16,
54] to separate mixed signals for multi-target sensing.

Despite these limitations, WIDESEE moves an important step to-
ward enabling wide-area contactless sensing. We believe WIDESEE

provides valuable reference for future research in this field.

6 RELATED WORK
Our work is broadly related to the literature in two areas.

6.1 Human Activity Recognition
Computer-vision-based human activity sensing techniques have en-
abled mature applications. For instance, Kinect [8] and Leap Mo-
tion [3] can achieve fine-grained human gesture tracking. However,
these systems are sensitive to lighting condition and the monitor-
ing angle and cannot work when the target is blocked or behind a
wall. Wearable sensor-based solutions overcome the above limita-
tions [13, 20, 32] but still bring in inconvenience to users as they
require instrumenting the users. However, it would be unrealistic to
assume every target has a working wearable in emergencies.

Compared to vision or wearable-based solutions, wireless-signal-
based human activity recognition systems can penetrate walls and
do not require the user to carry or wear a device. Early work in this
area use multiple transceiver pairs to construct a 3D lattice of wire-
less links to identify the presence of human movements [44]. Later
work try to use a single device equipped with multiple antennas
to realize activity recognition. For example, WiSee can differenti-
ate nine commonly seen body gestures with the help of machine
learning techniques [42]. The effectiveness of the learning based
methods depends on the quality of the training data, but obtaining
high quality training data remains costly and non-trivial. For ex-
ample, CrossSense [23] requires collecting thousands of samples
to learn a single activity recognition model at one given environ-
ment. WIDESEE avoids the pitfalls of a learning-based approach by
developing analytical models for activity recognition. It requires sig-
nificantly less effort for collecting data samples and can be portable
to different environments.

Recent studies also show it is possible to sense the respiration [9,
15, 18], heart rate [9], or even emotion [38] using wireless signals.
However, prior approaches only work at a small scale (e.g., the
room-level) and would require dense deployment to work on a large
area. WIDESEE builds upon these past foundations of human activity
modeling, to extend the scope of contactless human sensing for wide
areas with a LoRa transceiver pair. Our work aims to close the gap
of wireless sensing for disaster rescue in the urban areas, as well as
terrorist search and security surveillance.

6.2 Indoor Localization and Tracking
There is an intensive body of work in localizing and tracking ob-
jects [10, 11, 22, 28, 51, 59]. Prior work can be broadly grouped
into two categories: device-based and device-free approaches.

A device-free approach has the advantage of not requiring the
end-user to carry a device. By lifting the limitation of carrying a
device, device-free methods can target a wider range of applications
when compared to the device-based counterparts. WIDESEE thus
follows a device-free (contactless) approach.

Target location and tracking can be realized through a range of
wireless signal characteristics, including AoA [22, 33], ToF [32, 36],
and the signal amplitude [30]. An amplitude-based approach is sim-
ple and cost-efficient, but it suffers from poor localization accuracy
(especially in non-line-of-sight conditions) – due to additional signal
attenuation resulted from obstacles and severe amplitude fluctuation
due to rich multipath indoors. Methods using phase information such
as AoA can effectively separate multipaths, and a good resolution
and accuracy would require a large antenna array at the receiver.
ToF-based methods are not ideal either, because they are limited by
the frequency bandwidth.

WIDESEE is the first attempt to realize contactless wide-area
sensing with a single LoRa transceiver pair. It does so by combing
the long-communication LoRa signal and the mobility of the drone.
However, achieving the goal requires overcoming two challenges:
(1) the serve multipath effects when using single LoRa transceiver
pair, and (2) the hurdle for not having available phase or ToF in-
formation on LoRa. Inspired by [31], WIDESEE extracts direction-
related information from amplitude measurements for localization,
but it advances prior work by relying on a single instead of multiple
transceiver pairs. WIDESEE employs a set of new algorithms to
remove the localization ambiguity caused by one transceiver pair.
WIDESEE also leverages and refines existing multipath removal
methods [52]. The result is a promising solution using a single
transceiver pair for wide-area contactless sensing, which could po-
tentially open up many new research opportunities.

7 CONCLUSIONS
This paper has presented WIDESEE, a hardware-software system that
can perform wide-area wireless sensing using just one transceiver
pair. WIDESEE utilizes LoRa signals to achieve better through-wall
penetration and larger sensing range. To further widen the sensing
area, WIDESEE employs drones to carry the transceiver to improve
the sensing coverage. The combination of single LoRa transceiver
pair and device mobility, however, brings new challenges of severe
interference and sensing ambiguities (e.g., localization). To address
these challenges, we design a set of techniques at the hardware
and software layers, which can be applied to many wireless sensing
applications. We believe WIDESEE moves an important step towards
wide-area wireless sensing, and is highly attractive in real-world
emergency scenarios like disaster rescue and terrorist search.
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