
42

Automatic and Portable Mapping of Data Parallel Programs
to OpenCL for GPU-Based Heterogeneous Systems

ZHENG WANG, Lancaster University
DOMINIK GREWE and MICHAEL F. P. O’BOYLE, University of Edinburgh

General-purpose GPU-based systems are highly attractive, as they give potentially massive performance
at little cost. Realizing such potential is challenging due to the complexity of programming. This article
presents a compiler-based approach to automatically generate optimized OpenCL code from data parallel
OpenMP programs for GPUs. A key feature of our scheme is that it leverages existing transformations,
especially data transformations, to improve performance on GPU architectures and uses automatic machine
learning to build a predictive model to determine if it is worthwhile running the OpenCL code on the GPU or
OpenMP code on the multicore host. We applied our approach to the entire NAS parallel benchmark suite and
evaluated it on distinct GPU-based systems. We achieved average (up to) speedups of 4.51× and 4.20× (143×
and 67×) on Core i7/NVIDIA GeForce GTX580 and Core i7/AMD Radeon 7970 platforms, respectively, over a
sequential baseline. Our approach achieves, on average, greater than 10× speedups over two state-of-the-art
automatic GPU code generators.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Compilers

General Terms: Experimentation, Languages, Measurement, Performance

Additional Key Words and Phrases: GPU, OpenCL, Machine-learning mapping

ACM Reference Format:
Zheng Wang, Dominik Grewe, and Michael F. P. O’Boyle. 2014. Automatic and portable mapping of data
parallel programs to OpenCL for GPU-based heterogeneous systems. ACM Trans. Architec. Code Optim. 11,
4, Article 42 (December 2014), 26 pages.
DOI: http://dx.doi.org/10.1145/2677036

1. INTRODUCTION

Heterogeneous systems consisting of a host multicore and general-purpose GPU are
highly attractive, as they give potentially massive performance at little cost. Realizing
such potential, however, is challenging due to the complexity of programming. Users
typically have to identify potential sections of their code suitable for SIMD style par-
allelization and rewrite them in an architecture-specific language. To achieve good
performance, significant rewriting may be needed to fit the GPU programming model
and to amortize the cost of communicating to a separate device with a distinct address

Extension of Conference Paper: A preliminary version of this article entitled “Portable Mapping of Data
Parallel Programs to OpenCL for Heterogeneous Systems” by D. Grewe, Z. Wang, and M. O’Boyle appeared
in International Symposium on Code Generation and Optimization (CGO)[Grewe et al. 2013a].
Authors’ addresses: Z. Wang, School of Computing and Communications, Lancaster University; email:
z.wang@lancaster.ac.uk; D. Grewe, Google London, 76 Buckingham Palace Road, London SW1W 9TQ, United
Kingdom; email: dominik.grewe@googlemail.com; M. F. P. O’Boyle, School of Informatics, University of Ed-
inburgh; email: mob@inf.ed.ac.uk.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2014 ACM 1544-3566/2014/12-ART42 $15.00

DOI: http://dx.doi.org/10.1145/2677036

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 42, Publication date: December 2014.

http://dx.doi.org/10.1145/2677036
http://dx.doi.org/10.1145/2677036

42:2 Z. Wang et al.

space. Such programming complexity is a barrier to greater adoption of GPU-based
heterogeneous systems.

OpenCL is emerging as a standard for heterogeneous computing. It provides portabil-
ity, which allows the same code to be executed across a variety of processors, including
multicore CPUs and GPUs. By exposing fine-grained parallelism, carefully written
OpenCL (or CUDA) programs can achieve good performance across parallel processor
architectures [Stratton et al. 2010].

However, there are many legacy programs written with shared memory program-
ming languages such as OpenMP [Lee et al. 2009]. To benefit from heterogeneous
performance, it will require considerable development efforts to rewrite those pro-
grams with OpenCL, and the process can be prone to error [Lee and Eigenmann 2010].
This work aims to provide a simple upgrade path for targeting OpenMP programs on
heterogeneous platforms. We achieve this by developing a compiler-based approach
that automatically generates optimized OpenCL from a subset of OpenMP and using
machine learning to determine the best-performing processor on a CPU-GPU mixed
system. This allows the user to run the same data parallel program written in OpenMP,
which has been fully tested, with no modifications while benefiting automatically from
heterogeneous performance.

The first effort in this direction is proposed in Lee et al. [2009]. Here, the OpenMPC
compiler generates CUDA code from OpenMP programs. While promising, there are
two significant shortcomings with this approach. First, OpenMPC does not apply data
transformations. As shown in this article, data transformation is crucial to achieve
good performance on GPUs (Sections 4 and 7.4). Second, the programs are always
executed on GPUs. Although GPUs may deliver improved performance, they are not
always superior to CPUs [Bordawekar et al. 2010; Lee et al. 2010a]. A technique for
determining when GPU execution is beneficial is needed. This article addresses both of
these issues, and when evaluated on the full NAS parallel benchmarks, our technique
outperforms OpenMPC by a factor of 10.

Our work examines performance portability across heterogeneous platforms, consid-
ering the trade-offs in heterogeneity—it may be better to run the program as OpenMP
on a multicore rather than as OpenCL on the GPU. It uses OpenCL as a target language
and is applied to the entire NAS parallel benchmark suite on different GPU-based
systems from different vendors, using automatic machine learning techniques to pre-
dict the best components to use in a heterogeneous system. We generate high-quality
OpenCL code achieving up to 202× speedup over sequential C for the ep benchmark on
AMD Radeon automatically. This article’s technical contributions can be summarized
as follows. It is the first to:

—use machine learning to decide between different implementation languages on het-
erogeneous platforms (Section 5),

—use machine learning to automatically build cost-based models for dynamic array
index reordering for GPUs (Section 4), and

—automatically translate and map all NAS parallel benchmarks onto GPUs; some of
benchmarks are up to 3,600 lines long with 66 kernels – a nontrivial task (Section 7).

A key feature of our scheme is that it uses machine learning to build predictive
models to automatically determine if it is worthwhile running the code on the GPU or
the multicore host. Furthermore, it can adapt this model to different GPU architectures
and generations. We also show that data transformations can be used to significantly
improve performance on GPU architectures. This means that the user can use the same
OpenMP code on different platforms with the compiler determining the best place for
code to run and optimize it accordingly.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 42, Publication date: December 2014.

Automatic and Portable Mapping of Data Parallel Programs to OpenCL 42:3

Fig. 1. Simplified example of generating OpenCL code from OpenMP code. The top left code snippet
(a) is taken from bt. The corresponding OpenCL code (b) delivers poor performance on both GPUs (c). After
applying data transformation to the OpenMP code (d), we obtain the new OpenCL code shown in (e). The
performance of both GPUs improves significantly, but only for large inputs can they outperform the CPU (f).

2. MOTIVATION

With the massive interest in GPUs, it is important to know that GPUs are not always
the most suitable device for scientific kernels. This section provides a simple example
demonstrating that the appropriateness of GPU computation depends on the original
program, data size, and the transformations available.

Consider the OpenMP fragment in Figure 1(a) from the NAS parallel benchmark bt,
a benchmark containing more than 60 parallel loops potentially suitable for offloading
to a GPU. This program was executed with two different programs input: a small input,
W, and a large input, A. Using our basic OpenMP to OpenCL translator yields the code
shown in Figure 1(b). The parallel loop has been translated into a kernel where each of
the loops is parallelized forming a 3D parallel work-item space (i.e., ND-Range), each
point of which is accessed through a call to get_global_id for dimensions 0, 1, and 2.

If executed on a GPU with the W input size, however, this code gives disappoint-
ing performance when compared to executing the code on a multicore as shown in
Figure 1(c). This is largely due to a relatively small work to be performed on the GPU,
where a high percentage of coalesced memory access is required to achieve good per-
formance (see Table IV in Section 7.6). If we execute the same code with a larger input
size A, the GPU performance improves but is still less than the performance achieved
on the multicore, primarily because of the memory access pattern of the kernel, which
does not allow for memory coalescing on the GPU. This can be changed by performing
global index reordering (see Section 4.1) as shown in Figure 1(d), transforming the data
layout of array lhs. This gives the new OpenCL program shown in Figure 1(e). Here,
the most rapidly varying indexes of the array correspond to the tile IDs giving coa-
lesced memory accesses. As can be seen later in Table IV, this improves the percentage
of coalesce memory access (feature F2 in Table IV) from 0 to 0.78 and 0.999 for input
sizes W and A, respectively. In Figure 1(f), we see that the resulting performance of the
GPU code improves substantially for data size W. If this transformed code is executed

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 42, Publication date: December 2014.

42:4 Z. Wang et al.

z

Fig. 2. Overview of our compilation framework.

with a larger data size A, the GPU performance further improves, with both GPUs now
outperforming the multicore OpenMP implementation.

This example shows that the translated OpenCL code can give better performance
than the original OpenMP code depending on the data size and transformations avail-
able. As described in Section 6, this decision varies from program to program and across
different platforms and data sizes, and depends on a number of factors (see Figures 13
and 14). What we would like is a system that learns when to use the GPU, changing
its decision based on the availability of underlying optimizations such as data layout
transformations.

3. OVERALL SCHEME

Our compiler automatically translates OpenMP programs to OpenCL-based code, per-
forming loop and array layout optimizations along the way. It generates multiversioned
code for each parallel loop: the original OpenMP parallel loop and an optimized OpenCL
kernel alternative. At runtime, a machine learning (ML)-based predictive model decides
which version to use for execution. Our prototype compiler is implemented using Clang
(v3.0) and LLVM (v3.0) [LLVM 2013].

3.1. Compile Time

Figure 2 gives an overview of our approach. The OpenMP program is read in and
parallel loops are optimized and translated to OpenCL kernels. The generated kernels
are passed to a feature extraction phase that collects characteristics or features from
the Abstract Syntax Tree of the generated OpenCL code. These features are later
used by the ML model to select whether the OpenMP loop or OpenCL kernel version is
best (Section 4). The features, together with the generated OpenCL code, the original
OpenMP code, and a ML predictor built offline (Section 5) are merged into a single
output program source.

3.2. Runtime

At execution time, the program first updates the parameterized feature values based
on the runtime values of parameters and passes the instantiated feature values to
the ML model. The built-in model then predicts where to run the program and to pick
either the OpenMP version for a multicore CPU or the OpenCL version for a GPU.
Evaluating the model at runtime involves on the order of tens of operations and is
thus negligible. This is the high-level overview of the compilation framework. The next
sections describe each of the stages in more detail.

4. CODE GENERATION AND OPTIMIZATION

Table I lists the OpenMP directives supported by our implementation.

Work-Sharing Constructs. Our compiler converts OpenMP parallel loops—that is,
loops that are annotated with omp for or omp for reduction—into OpenCL kernels.
Other parallel OpenMP directives associated with task parallelism are not currently
supported. A two-stage algorithm [AMD 2013] is used to translate parallel reduction
loops.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 42, Publication date: December 2014.

Automatic and Portable Mapping of Data Parallel Programs to OpenCL 42:5

Table I. Supported OpenMP Directives

Parallel Constructs etc. parallel for for reduction

Data Attributes default shared private first_private

last_private threadprivate copyin

Other Constructs barrier atomic critical master

single flush

Data Attributes. In OpenMP, variables may have additional type information spec-
ified by directives: default, shared, private, first_private, last_private, copyin,
and threadprivate. Our framework uses these directives to map data onto the GPU
memory space. Each variable with the share or default directive will be translated
into an OpenCL global variable shared by all OpenCL threads. Variables declared as
private and threadprivate are translated such that there is a private copy for each
OpenCL work item; no memory transfer between the GPU and the CPU is needed.
For each variable specified as copyin or first_private, we create a private copy for
each OpenCL work item but initialize each copy using explicit memory transfers before
its first use. Similarly, we create a private copy of a last_private variable, and the
original variable is updated by the GPU thread that executes the last work item.

Other Constructs. Our implementation also supports a number of synchronization
and thread constructs. Structured blocks identified with master, single, and critical
directives are executed by one thread on the host multicore. barrier is implemented
by calling the OpenCL clFinish API to synchronize all OpenCL threads. An atomic
operation is translated into the corresponding OpenCL atomic function according to
the type of the operand (variable). The current level of atomic support can be easily
extended to support part of the C11 atomics, such as atomic load and stores. To fully
support the C11 atomic standard is our future work. Finally, flush is implemented
using the OpenCL barrier(CLK_LOCAL_MEM_FENCE | CLK_GLOBAL_MEM_FENCE) API.

4.1. OpenCL Code Optimization

Our compiler performs a number of optimizations to improve the performance of the
OpenCL code on the GPU.1 The optimizations implemented in our compiler are applied
in the following order.

Loop Interchange. High memory bandwidth on GPUs can only be achieved when
memory accesses are coalesced—that is, adjacent threads access adjacent memory
locations in the GPU off-chip memory. Our framework applies loop interchange to place
outermost those iterators that occur most frequently in the innermost array subscripts.
We use the LLVM DependenceAnalysis pass to detect to which level the nested loop
can be interchanged.

Global Index Reordering. Global index reordering is the data structure equivalent
of loop reordering. Indexes of an array are permuted to fit an optimization purpose.
This transformation is necessary when loop interchange cannot provide memory co-
alescing. This can be represented as [s1, s2, . . . , sn] �→ [sx1 , sx2 , . . . , sxn], where each
xk ∈ 1, . . . , n ∧ ∀i, j, (xi = xj) ⇒ (i = j). In our case, we wish to place outermost
those indexes that appear as OpenCL work-item indexes. Given that there are a max-
imum of three parallel work-item indexes, t1, t2, t3, then for any one access we wish
sxn = t1, sxn−1 = t2, sxn−2 = t3. An example of this transformation was shown in Figure 1:
[i, j, k, 0, 0, 0] �→ [0, 0, 0, i, j, k].

1The LLVM “-O3” optimization stack also provides other types of optimizations that primarily perform on
the LLVM IR level. Integrating this into our source to source OpenCL code generator is the future work.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 42, Publication date: December 2014.

42:6 Z. Wang et al.

After index reordering, our compiler renames the function prototype where input
array arguments will be updated accordingly and changes the code where this function
is called. This removes the need for additional array copying (in and out) to comply
with the calling context. Global index reordering requires global alias analysis to en-
sure correctness. To do so, we run the code through the “-basicaa” and “-steens-aa”
passes provided by LLVM, where the later pass implements the well-known Steens-
gaard’s pointer analysis [Steensgaard 1996]. Note that our current implementation
only applies global index reordering to statically allocated arrays.

Dynamic Index Reordering. In conjunction with loop interchange global index, re-
ordering is often sufficient to achieve memory coalescing. However, in some cases,
there is no clear best global data layout, such as when different loops in a program re-
quire different layouts to achieve memory coalescing. We then consider dynamic index
reordering [Che et al. 2011].

Before entering a code region containing loops that prefer a certain index order for
an array X (different from the global one), a reordered copy of the array, X ′, is created.
During the copy process, the data gets reordered as follows. Given a preferred access
pattern [sx1 , sx2 , . . . , sxn], we copy X to X ′ such that X ′[sx1 , sx2 , . . . , sxn] = X [s1, s2, . . . , sn].
Within the code section, all references to X are redirected to X′ and the indexes are
reordered appropriately. At the end of the region, the data gets copied back to the
original array.

Dynamic index reordering for GPU computing can often be prohibitive. The trans-
formation should only be applied if the benefits of data coalescing outweigh the costs
of data reordering. To be used in a compiler setting, we therefore need a mechanism
to automatically determine when this transformation should be applied. Section 5.4
describes an ML-based cost model that solves this problem.

Memory Load Reordering. In the original OpenMP programs, accesses to read-only
buffers might be reordered to form a sequence of consecutive load operations that can
be vectorized. Our compiler automatically detects those accesses and replaces scalar
load operations with an OpenCL vector load operation. Our current implementation
simply groups consecutive load and store operations together and replace them with an
OpenCL vloadn or vstoren (n = 2, 4, 8, 16) operation. This is a standard optimization
technique that has been used in prior work [Eichenberger et al. 2004; Yang et al. 2010].

Register Promotion. On many occasions, a scalar variable (or array) stored in the
global memory space is accessed multiple times by a single OpenCL kernel. To reduce
global memory latencies, our tool automatically creates a private register object for
such a variable. It generates code to load the data from the global memory to the
private register copy (and write back to the global memory from the register after
the last store operation). Doing so can eliminate redundant global memory loads and
stores and thus improves performance. Depending on the implementation, the back-
end OpenCL compiler might also perform register promotion optimization [Lu and
Cooper 1997; Chakrabarti et al. 2012] on the generated code.

Prefetching and Local Memory Optimization. For read-only buffers (that are used
by multiple GPU threads) identified by our compiler, we generate code to prefetch the
data to the local memory. Exploiting local memory generally reduces memory latencies
for GPU kernels [Lee et al. 2010b].

Host–Device Communication. For each array that is used by both the host and the
GPU, we manage two copies: one on the host memory and the other on the GPU
memory. Our runtime records the status of each variable and checks whether the copy
on a device memory space is valid or not. No memory transfer is needed as long as

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 42, Publication date: December 2014.

Automatic and Portable Mapping of Data Parallel Programs to OpenCL 42:7

Fig. 3. The generated host code of the loop shown in Figure 1(a).

the copy in the target memory space is valid. Our current implementation uses a
conservative approach: if an element of an array has been updated, the entire array
needs to be synchronized before it can be used by threads running on a different device.
There are advanced techniques available for host–device communication optimizations
[Jablin et al. 2012; Margiolas and O’Boyle 2014], which are orthogonal to our approach.

4.2. Host Code Generation

For each parallel loop, we outline the loop body and generate two versions for it: an
OpenCL and an OpenMP version. The original loop body is replaced with a function
pointer that points to either the OpenCL or OpenMP version of the loop. For exam-
ple, the OpenCL version of the original loop shown in Figure 1(a) is translated to
__ocl_lhsy_L1 as shown in Figure 3. We try to generate as many work items as pos-
sible to utilize the GPU. Each iteration of the nested parallel loops is translated into
a OpenCL work item. The dimension of the ND-range is determined by the number
of nested loops to be parallelized (up to three dimensions due to the restriction of
OpenCL). In Figure 3, the OpenCL work item indexes are calculated at line 2, and are
then sent to the OpenCL runtime at line 7. The original loop body is replaced with a
function pointer at line 14. Each generated code has a prediction function, __predict,
that decides which device to use to run the program. This is done by setting the function
pointer of each loop to the corresponding code version. Currently, we use a single pro-
gram version for all parallel loops and do not use both versions interleaved at runtime.
Finally, host–device communication is managed by our communication library, where
read and write operations to OpenCL buffers are identified through the oclReads and
oclWirtes functions, respectively (line 5). The oclWirtes function keeps track of which
device has recently updated the input OpenCL buffer. This information will be used to
determine whether a data transfer is needed at runtime.

5. PREDICTING THE MAPPING

A crucial part of our approach is to automatically determine the best computing device
for the input program, whether it should be run on the multicore host or translated
into OpenCL and executed on the GPU. Our approach is to generate the OpenCL-based

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 42, Publication date: December 2014.

42:8 Z. Wang et al.

Fig. 4. The process of training a decision tree classifier.

Table II. List of Code Features

(a) Individual code features

Raw Code Features
comp Number of compute operations
mem Number of accesses to global memory
localmem Number of accesses to local memory
coalesced Number of coalesced memory accesses
transfer Amount of data transfers
avgws Average number of work items per kernel

(b) Combinations of raw features

Combined Code Features
F1: transfer/(comp+mem) Communication-computation ratio
F2: coalesced/mem Percentage of coalesced memory accesses
F3: (localmem/mem) × avgws Ratio of local to global memory accesses

× average number of work items per kernel
F4: comp/mem Computation-memory ratio

code and then use an ML model to see if this is profitable to run on a GPU. If it is not
profitable, we fall back to the original OpenMP code. As this decision will vary greatly
depending on GPU architectures and the maturity of the OpenCL runtime, we wish to
build a portable model that can adapt to the change of the architecture and runtime.

We prefer to avoid any additional profiling runs or exhaustive search over different
datasets, so our decision is based on static compiler analysis of the abstract syntax tree
and runtime parameters. The static analysis characterizes a kernel as a fixed vector of
real values, or features.

5.1. Training the Predictor

Figure 4 shows the process of training the predictor—in our case, a decision tree
classifier. This involves the collection of a set of training data that is used to fit the
model to the problem at hand. In this work, we use a set of programs that are each
executed on the CPU and the GPU to determine the best device in each case. We
also extract code features for each program as described in the following section. The
features, together with the best device for each program from the training data, are
used to build the model. Since training is only performed once at the factory, it is a
one-off cost. In our case, the overall training process takes less than a day on a single
machine.

5.2. Code Features

Our predictor is based on code features (Table IIa). These are selected by the com-
piler writer and summarize what are thought to be significant costs in determining
the mapping. At compile time, we analyze the OpenCL code and extract information
about the number and type of operations. We developed a Clang-based tool to extract

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 42, Publication date: December 2014.

Automatic and Portable Mapping of Data Parallel Programs to OpenCL 42:9

those features from the abstract syntax tree of the code. Double precision floating point
operations are given a higher weight (4×) than single precision operations, as they
are expensive on many GPU architectures. Obviously, this weight is highly platform
dependent, but this can be estimated by using microbenchmarks to test how much
extract time is needed for performing the same number of double floating point opera-
tions versus single floating operations. Using an analytical model similar to Sim et al.
[2012], we also analyze the memory access pattern to determine whether or not an ac-
cess to global memory is coalesced. A potential feature is the amount of control flow in
an application. Although this feature can have an impact on performance on the GPU,
it was not relevant for the benchmarks that we considered. It is thus not included in
our feature set. This may be needed for other OpenCL application domains, and it can
be easily integrated into our model. Finally, instead of using raw features, we group
several features to form combined normalized features that carry more information
than their parts (Table IIb).

Collecting Training Data. We use two sets of benchmarks to train our model. First,
we use a collection of 47 OpenCL kernels taken from various sources: SHOC [Danalis
et al. 2010], Parboil [UIUC 2013], NVIDIA CUDA SDK [NVIDIA Corp. 2013], and
AMD Accelerated Parallel Processing SDK [AMD 2013]. These benchmarks are mostly
single precision with only one kernel in each program, whereas the NAS benchmarks
are double precision and have multiple kernels. We thus also add the NAS benchmarks
to our training set but exclude the one for which we make a prediction (see Section 6.2).

Predictive Modeling. Our decision tree–based model is constructed using the C4.5
algorithm [Quinlan 1993]. The model is automatically built from training data by
correlating features to the best-performing device (Figure 4). The model performs only
on the generated OpenCL code. As such, it is independent of the type of the input
program of our compiler. An example of a decision tree is given later in Figure 13,
where a decision is made by comparing one of the combined features (Table IIb) to a
threshold. If the feature is smaller than the threshold, the left subtree is traversed;
otherwise, the right one is traversed. This is repeated until a leaf node is reached,
labeled with one of the classes—“CPU” or “GPU”—tellingus which device to use.

5.3. Runtime Deployment

Once we have built the ML model as described previously, we can insert the model
together with the syntax code features (extracted at compile time) to the generated
code for any unseen, new programs so that the model can be used at runtime.

Updating Feature Values. At compile time, the OpenCL kernel is analyzed and code
features are extracted and inserted to the generated program together with the trained
ML model. As some loop bounds depend on the input, the compiler might be unable to
determine certain feature values. These features are represented as static symbolic
precomputation of loop bound variables, which will be updated using runtime values
at runtime. If the loop bounds still cannot be determined at the time the prediction
function is called, we simply use the average loop bound value as an estimation.

Version Selection. Figure 5 depicts the process of version selection during runtime.
The first time a kernel is called, the built-in predictive model selects a code version for
execution (line 12 in Figure 3). It uses instantiated feature values to predict the best
computing device to use and sets function pointers to the corresponding code version.
In our current implementation, prediction happens once during a program’s execution.
The overhead of prediction is negligible (a few microseconds). This cost is included in
our later results.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 42, Publication date: December 2014.

42:10 Z. Wang et al.

Fig. 5. Runtime: selecting a code version at execution time. The generated program first updates features
based on input data and passes the updated features to the ML model. The model then predicts the best
device (CPU or GPU) to run the program and selects a code version (OpenMP or OpenCL) for execution.

Fig. 6. The automatically constructed decision trees for dynamic index reordering transformation on
NVIDIA GeForce and AMD Radeon GPU platforms.

5.4. A Model for Dynamic Index Reordering

In Section 4.1, we described the dynamic index reordering transformation. Although
this transformation can greatly improve performance on the GPU, it can also lead to
slowdowns if the cost of reordering the data is higher than the benefits. Because the
point at which the benefits outweigh the costs is highly machine dependent, we are
using a portable machine learning approach that can be easily adapted to different sys-
tems. Similar to predicting the mapping, we use a decision tree classifier. The features
are the size of the data structure and the ratio between the number of accesses to the
data structure and its size.

We developed a set of microbenchmarks and use them to obtain the training data
for this problem.2 We measure the execution time with and without applying dynamic
index reordering to determine whether it is beneficial in each case. Evaluating the
benchmarks and then building the decision tree model takes less than half an hour.

The resulting model is embedded into each output program because array dimensions
and loop bounds may not be known at compile time. We thus keep two versions of each
candidate kernel: the original one and one with accesses reordered. At runtime, one of
them gets picked by the model.

Model. Figure 6 shows the decision trees for dynamic index reordering transfor-
mation on the two GPU platforms. We used the C4.5 algorithm [Quinlan 1993] to
construct the decision tree model. The model is automatically built from training data
that consists of data points describing a particular scenario for dynamic index reorder-
ing and whether it is beneficial or not. Each scenario is represented by two features:
the size of the data structure and the ratio between the number of accesses and the
size (corresponding to benefits over costs).

2We opted for microbenchmarks because the amount of training data from real applications is limited.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 42, Publication date: December 2014.

Automatic and Portable Mapping of Data Parallel Programs to OpenCL 42:11

Table III. The Primary Evaluation Hardware Platforms

Intel CPU NVIDIA GPU AMD GPU
Model Core i7 3820 GeForce GTX 580 Radeon 7970
Core Clock 3.6GHz 1,544MHz 925MHz
Core Count 4 (8 w/HT) 512 2,048
Memory 12GB 1.5GB 3GB
Peak Performance 122GFLOPS 1,581GFLOPS 3,789GFLOPS

6. EXPERIMENTAL METHODOLOGY

6.1. Platforms and Benchmarks

Our main experiments were performed on two CPU-GPU systems: both use an Intel
Core i7 six-core CPU. One system contains an NVIDIA GeForce GTX 580 GPU, and
the second contains an AMD Radeon 7970. Both run with the Ubuntu 10.10 64-bit OS.
Table III gives detailed information on our platforms. We also evaluated our approaches
on other GPU platforms, which are described in the sections where the results are
presented.

All eight of the NAS parallel benchmarks (v2.3) were used for evaluation. We used
the OpenMP C translation of the NAS 2.3 benchmark suite derived from the Omni
compiler project [Omini Compiler Project 2009]. Unlike many GPU benchmarks that
are single precision, all benchmarks except is are double precision programs.

6.2. Methodology

We considered all input sizes (S, W, A, B, C) for each NAS benchmark as long as the
required memory fit into the GPU memory. All programs have been compiled using
GCC 4.4.1 with the “-O3” option. Each experiment was repeated five times, and the
average execution time was recorded. The variation of runtime is small, less than 5%.

We use leave-one-out cross validation to train and evaluate our ML model for predict-
ing the best computing device. This means that we remove the target program to be
predicted from the training program set and then build a model based on the remaining
programs. We repeat this procedure for each NAS benchmark in turn. It is a standard
evaluation methodology, providing an estimate of the generalization ability of an ML
model in predicting an unseen program. This approach is not necessary for the dynamic
index reordering model because we use microbenchmarks as training data rather than
the programs themselves.

Since OpenCL programs can also run on the CPU, an interesting question is to
consider running the OpenCL programs on the CPU. However, for the benchmarks we
used, doing so (with CPU-specific optimization) does not give advantages over other
schemes considered in this article. On only one occasion, bt.W, such a scheme gives
slightly better performance (8% faster) than other schemes. We also observed this on
the CPU-tuned SNU OpenCL implementation. This may change when using other sets
of benchmarks, hardware platforms, or OpenCL runtime and is an interesting future
research direction.

7. EXPERIMENTAL RESULTS

In this section, we evaluate our approach on several heterogeneous systems for the NAS
parallel benchmark suite. We first show the performance of our predictive modeling
approach compared to always using the multicore CPU or the GPU. This is followed
by a comparison to two state-of-the-art GPU code generation approaches: OpenMPC
[Lee et al. 2009] and OpenACC [Portland Group 2010]. We then compare our approach
against a manual OpenCL implementation of the NAS benchmark suite [Seo et al.
2011]. Next, we provide detailed analysis of our approach, including the performance

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 42, Publication date: December 2014.

42:12 Z. Wang et al.

Fig. 7. Performance of OpenMP on an Intel CPU, OpenCL on an NVIDIA GeForce GTX580 GPU, and the
version selected by our predictive model. The predictive model outperforms the CPU-only approach by 1.69×
and the GPU-only approach by 3.9×.

Fig. 8. Performance of OpenMP on an Intel CPU, OpenCL on an AMD Radeon HD7970 GPU, and the version
selected by our predictive model. The predictive model outperforms the CPU-only approach by 1.76× and
the GPU-only approach by 6.8×.

breakdown of different optimization strategies, OpenCL runtime, and a close look of
our predictive models. Finally, we present a brief evaluation of our approach on two
heterogeneous systems with integrated GPUs.

7.1. Overall Performance

Figures 7 and 8 show speedups for the NAS benchmarks on the two heterogeneous
systems described in Section 6. For each benchmark-input pair, the multicore CPU
performance, the GPU performance, and the performance of the device selected by our
predictor is shown. The last column represents the average performance (using the
geometric mean) of each approach as well as that of the “oracle,” which always picks
the best device in each case. The performance numbers presented are speedups over
single-core execution.

On both systems, significant speedups can be achieved by selecting the right device:
CPU or GPU. When always selecting the faster of the two, speedups of 4.70× on the
NVIDIA system and 4.81× on the AMD system can be achieved. This compares to
2.78× and 2.74× when always using the CPU3 and 1.19× and 0.71× on the GPU.

The results show that speedups vary dramatically between the CPU and GPU, and
none of the devices consistently outperforms the other. On ep, for example, an embar-
rasingly parallel benchmark, the GPU clearly outperforms the multicore CPU: up to
11.6× on NVIDIA and 30.2× on AMD. However, on other benchmarks, such as is or
lu, the CPU is significantly faster. In the case of lu, this is because the OpenMP ver-
sion exploits pipeline parallelism using a combination of asynchronous parallel loops
and a bit array to coordinate pipeline stages. The current SIMD-like execution models
of GPUs are not designed to exploit this type of parallelism. The is benchmark does
not perform a significant amount of computation, and GPU execution is dominated by

3Even though the same CPU was used in both cases, the numbers vary slightly because the benchmark sets
are different due to memory constraints on the GPUs.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 42, Publication date: December 2014.

Automatic and Portable Mapping of Data Parallel Programs to OpenCL 42:13

communication with the host memory. This leads to underutilization of the GPU and
thus bad performance.

For benchmarks bt, cg, and sp, we observe that the CPU is faster for small inputs
but the GPU is better on larger input sizes. This behavior is to be expected because
GPUs require large amounts of computation to fully exploit their resources. On small
inputs, the overheads of communication with the host dominate the overall runtime
when using the GPU. A similar pattern is shown for ft and mg: GPU performance is
stronger for larger inputs. However, the GPU is not able to beat the CPU even for the
largest input sets. For is, because the program does not have enough parallelism, it
is actually not worthwhile to run it in parallel for any given dataset on our platforms.
This is also reported in other studies [Tournavitis et al. 2009].

These observations show the need for a careful mapping of applications to devices.
Our model for predicting the mapping is able to choose the correct device almost all of
the time. On the NVIDIA system, it incorrectly picks the GPU for benchmark sp.W, and
on the AMD system, it picks the GPU for ft.A even though the CPU is faster. Overall,
we are able to achieve speedups of 4.63× and 4.80×, respectively. This is significantly
better than always choosing the same device and not far off the performance of the
“oracle.”

As can be seen, the best performance depends on the platform, transformations
available, and data sizes. Our scheme is able to predict the right option, achieving
95% of oracle performance on the NVIDIA GTX580 system and even 99% on the AMD
HD7970 system.

Prediction Accuracy. Our predictive model picks the correct device in 32 of the 33
cases (except for sp.W) on the NVIDIA system (97% accuracy) and in 33 of the 34 cases
(except for ft.A) on the AMD system (97% accuracy).

7.2. Comparison to State-of-the-Art GPU Code Generators

We compared our approach to two automatic GPU code generation systems: (1) Open-
MPC [Lee et al. 2009], which translates OpenMP to CUDA, and (2) the PGI OpenACC
compiler (v 14.4) with the “-fast” and accelerator-specific optimization flags [OpenACC
2013; Wolfe 2010; Portland Group 2010]. Because the PGI compiler fails to directly
compile the OpenMP version of the NAS benchmark suite, we used a GPU-specific
OpenACC implementation of the same benchmark suite developed by independent de-
velopers [PathScale Inc. 2013]. Because OpenMPC generates CUDA instead of OpenCL
code, we only evaluated it on the NVIDIA platform. Note that we were unable to gen-
erate code for benchmarks is, lu, and mg using OpenMPC. The results are shown in
Figure 9.

With the exception of ep, the OpenMPC-generated code performs poorly compared to
our approach. It only achieves a mean speedup of 0.42×—that is, slower than sequential
execution. The main reason is that OpenMPC does not perform data transformation,
leading to uncoalesced memory accesses in many cases. On average, our approach
outperforms OpenMPC by a factor of 10.

The PGI OpenACC compiler also gives overall slowdown performance. Note that by
excluding is, lu, and mg, which OpenMPC fails to compile, the PGI OpenACC com-
piler actually gives better overall performance than OpenMPC (0.7 vs. 0.4). OpenACC
outperforms OpenMPC on the cg benchmark but delivers poorer performance than
our approach on both platform. On average, it gives slowdown performance instead
of a 4.18× and 3.9× speedup achieved by our approach on the NVIDIA and AMD
platform, respectively. Because the PGI OpenACC compiler is an closed source soft-
ware, we cannot get deep insights of its implementation. Instead, we used the AMD
CodeXL profiling tool [AMD 2014] to analyze the generated OpenACC code on the

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 42, Publication date: December 2014.

42:14 Z. Wang et al.

Fig. 9. Speedup averaged across inputs of the OpenMPC compiler (NVIDIA only), the manual SNU imple-
mentation of the NAS benchmark suite and our predictive modeling.

Fig. 10. Speedup of the SNU implementation, our generated OpenCL code, and the predictive modeling–
based approach for the largest possible input size. This experiment was performed on two GPUs that the
SNU developers have used for testing and evaluation.

AMD GPU. We discovered that the OpenACC version has significantly longer OpenCL
kernel execution time compared to our approach. This may attribute to the lacking of
array index transformations to reduce the noncoalesced memory accesses of OpenCL
kernels. For some benchmarks, such as lu and is, the GPU gives no advantage and
the OpenACC runtime does not dynamically choose computing devices, thus leading to
poor performance. On average, our approach is 13× and 32× faster than the OpenACC
implementation on the NVIDIA and AMD platforms, respectively.

7.3. Comparison to Hand-Coded Implementation

Figure 10 compares the generated OpenCL code to the handwritten SNU implementa-
tion [Seo et al. 2011]. This provides independently handwritten OpenCL implementa-
tions of the NAS parallel benchmarks. We selected the largest possible input size for
each benchmark. To provide a fair comparison, the experiments were carried out on
two platforms where the developers have tested the code: a NVIDIA GTX 480 GPU and
an AMD Radeon HD6970 GPU.

The data show mixed results. For benchmarks bt, sp, and ft, our automatically
generated code outperforms the handwritten code. This is mainly due to the data
restructuring performed by our compiler, including dynamic index reordering, which
is especially important for benchmarks bt and sp. For cg and ep, the speedups for both
OpenCL code versions are similar, but our predictive model outperforms SNU NPB on
cg by selecting the right computing device (CPU) and using the OpenMP version.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 42, Publication date: December 2014.

Automatic and Portable Mapping of Data Parallel Programs to OpenCL 42:15

On the remaining benchmarks—is, lu, and mg—our generated code is not as good as
the SNU implementation. The SNU version of lu uses a different algorithm than the
original OpenMP code [Seo et al. 2011]. Their implementation uses a hyperplane algo-
rithm that is much more suited to GPU execution. Changing the algorithm is out of the
scope of our approach. For is, the SNU implementation uses atomic operations to com-
pute a histogram and a parallel prefix sum algorithm that is not exposed in the OpenMP
code and is not supported by our current implementation. The code for mg works on
highly irregular multidimensional data structures. In the generated code, these data
structures are flattened and indirection in each dimension is used to navigate through
the data. The SNU implementation uses a different approach that requires a single
level of indirection that leads to vastly improved performance. Nonetheless, our ML
model is able to pick the right computing device for those benchmarks, and the perfor-
mance gap between the manual implementation and our predictive modeling–based
approach is not significant.

Overall, our generated OpenCL code performs well. The hand-coded versions gener-
ally only perform better when algorithmic changes or code restructuring is performed,
which is difficult to achieve by an automatic compiler without human involvement.

7.4. Performance Breakdown

Figure 11 shows the impact of the transformations described in Section 4 whenever
they were applicable to a benchmark.

BT. As shown in Section 2, bt contains many multidimensional arrays and deeply
nested loops. Without applying any of the transformations, performance is thus poor
on the GeForce system. But even when applying loop interchange and static data
transformations, the performance only improves marginally (up to 0.81×). This is
because there are several large sections of the program that require different data
layouts to achieve memory coalescing and perform well on the GPU. Hence, when also
applying dynamic array index reordering, performance improves markedly. However,
when compared to CPU performance, we only see speedups for large input sizes W and
A. On the Radeon system (Figure 11(e)), a similar behavior can be observed.

CG. This benchmark only contains one-dimensional arrays and is thus not amenable
to loop interchange or data transformations. However, as shown in Figure 11(b) and
(f), good performance on GPUs can already be achieved without any transformations.
For small input sizes, slowdowns can be observed due to insufficient amounts of com-
putation. But for large input sizes, the GPU outperforms the CPU with speedups of up
to 5.56× and 6.79× on the two GPU architectures.

EP. Figure 11(c) and (g) show results for ep, an embarrassingly parallel benchmark
that performs a significant amount of computation per work item. Its data structures
are one-dimensional arrays, and data transformations are thus not applicable. How-
ever, even without any transformations, speedups of up to 78× on the GeForce and
202× on the Radeon systems over single-core execution are observed. This compares
to speedups of only up to 10× on the Core i7.

FT. For the ft benchmark, we see speedups on the GPU of up to 2.6× for large input
sizes (see Figure 11(d) and (h)). With small inputs using the GPU leads to slowdowns,
even after applying data transformations.

IS. On both architectures, significant slowdowns are shown for GPU execution on all
input sizes—from 0.03× to 0.78× on the GeForce GPU and from 0.01 to 0.04 on the
Radeon GPU (Figure 11(i) and (m)). But even on the CPU, only small speedups can be
achieved. This is dominated by communication with the host memory. Furthermore,

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 42, Publication date: December 2014.

42:16 Z. Wang et al.

Fig. 11. Speedup over single-core execution on Core i7 (OpenMP) and both the NVIDIA GTX580 and AMD
HD7970 systems (OpenCL). Where applicable, we show the performance of the transformation steps. LI,
loop interchange; SD, static data transformations; DD, dynamic data transformations.

each OpenCL work item needs to keep a private copy of a large array, which means
that the total number of work items is limited by the GPU memory. This leads to
underutilization of the GPU, which further reduces performance. Data transformations
are not applicable to this benchmark because it only works on one-dimensional arrays.

LU. Even though the OpenMP code shows good speedups on the CPUs, performance
on GPUs is poor despite applying data transformations (Figure 11(j) and (n)). lu is
a complex program, and its OpenMP version exploits pipeline parallelism using a
combination of asynchronous parallel loops and a bit array to coordinate pipeline stages.
The current SIMD-like execution models of GPUs are not designed to exploit this type
of parallelism. As a result, large parts of lu cannot utilize the GPU’s massive parallel
processing units and have to be serialized, which explains the slowdown on the GPUs
(as can be seen from the expensive host–device communication shown in Figure 12).

MG. For this benchmark, we see that speedups are only achieved for large input sizes
and after data transformations have been applied (Figure 11(k) and (o)). However, on
none of the architectures does the GPU outperform the CPU.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 42, Publication date: December 2014.

Automatic and Portable Mapping of Data Parallel Programs to OpenCL 42:17

Fig. 12. OpenCL time breakdown on the AMD HD7970. Each category is normalized to the sequential
execution of the program (lower is better). This diagram includes the host–device data transfer time, OpenCL
kernel time, and OpenCL host API overhead.

SP. Similar to bt, dynamic data realignment is required to unlock the best per-
formance for benchmark sp (Figure 11(l) and (p)). Static data transformations cannot
improve on the original data layout. Speedups of up to 8.6× on the GeForce GPU and up
to 4.1× on the Radeon GPU are shown for large input sizes. This compares to speedups
of up to 2.0× on the CPU. For small data sizes, however, the CPU outperforms the GPU.

7.5. Breakdown of OpenCL Runtime

Figure 12 shows the breakdown of OpenCL execution time for each benchmark (with
the largest possible input size) on the AMD HD7970 system. This information was
collected using the AMD CodeXL profiling tool [AMD 2014]. The time is normalized to
single-core execution of the original OpenMP program (lower is better). Each stacked
bar consists of host–device data transfer time, cumulative OpenCL kernel execution
time, and overhead for executing OpenCL host APIs the CPU.

Some benchmarks, such as ep, bt, cg, and sp, can make effective use of the GPU with
small kernel execution time and overall faster performance. Some benchmarks, by
contrast, are not suitable for GPU execution. For example, for is, the small number of
work items leads to underutilization of the GPU, and because each GPU processing unit
is simpler and weaker than a CPU core, this results in longer kernel execution time. For
lu, the frequent CPU serial execution introduces intensive host–device communication
and leads to slowdown performance. This figure shows that not all OpenCL programs
can utilize the GPU and the available parallelism and the communication cost of task
offloading are important factors when determining which device to use to run the
program.

7.6. Analysis of Predictive Models

Figures 13 and 14 show the decision trees constructed for the two systems by excluding
bt from the training set. The learning algorithm automatically places the most relevant
features at the root level and determines the architecture-dependent threshold for each
node. All of this is done automatically without the need of expert intervention.

As an example, the features for benchmark bt are shown in Table IV.4 We show
the features both before and after applying data transformations according to the
example shown in Section 2. This demonstrates the impact of the transformations on
the mapping decision.

4The feature values for all benchmarks can be found at http://www.lancaster.ac.uk/staff/wangz3/data/taco_
omp2ocl_fatures.gz.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 42, Publication date: December 2014.

http://www.lancaster.ac.uk/staff/wangz3/data/tacoomp2oclfatures.gz.
http://www.lancaster.ac.uk/staff/wangz3/data/tacoomp2oclfatures.gz.

42:18 Z. Wang et al.

Fig. 13. The model used for bt on NVIDIA GeForce GTX 580. Predictions for bt with and without data
transformations are marked as C1, C2, and C3.

Fig. 14. The model used for bt on AMD Radeon HD7970. Predictions for bt with and without data trans-
formations are marked as C1 and C2.

Table IV. Features of bt

(a) Without data transformations
F1 F2 F3 F4

S 0.0020 0 0 0.81
W 0.0004 0 0 0.82
A 0.0003 0 0 0.82

(b) With data transformations
F1 F2 F3 F4

S 0.0020 0.731 0 0.81
W 0.0004 0.780 0 0.82
A 0.0003 0.999 0 0.82

At the root of the tree in Figure 13, we look at the value for the communication-
computation ratio (F1). In all versions, the value is far below the threshold. We thus
proceed to the left subtree until reaching the fourth level of the tree. This node looks at
the percentage of coalesced memory accesses (F2). Without data transformations, none
of the accesses are coalesced and the left branch is taken, eventually leading to CPU
execution. With data transformations, memory coalescing has been improved (see bold
values in Table IVb). For input sizes S and W, the percentage of coalesced accesses is
less than 80%. For A, almost all accesses are coalesced due to dynamic index reordering
(see Section 4.1). All values are above the threshold, so the right branch is taken. We
follow the same branches until another node of F2 is reached. This time the threshold

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 42, Publication date: December 2014.

Automatic and Portable Mapping of Data Parallel Programs to OpenCL 42:19

Fig. 15. Performance impact of dynamic index reordering when applying the transformation to none, the
first, or the second of the candidate regions. The runtime is broken up into the runtime for the two candidate
code regions, the runtime of the transformation (if applicable), and the rest of the program.

is higher, namely 0.9. For input sizes S and W, the left branch is taken, which leads
to execution on the CPU. For the larger input size A, we take the right branch and
eventually reach a node predicting to run on the GPU. All programs get mapped to the
right device.

Figure 14 shows the decision tree constructed for the AMD Radeon system. The first
node also looks at the ratio between communication and computation. The threshold
is lower (0.03); however, for all versions of bt, the ratio is still below the threshold. The
same path is followed by all versions until the fourth level of the tree is reached. At
this point, we look at the percentage of coalesced accesses. The versions without data
transformations are mapped to the CPU because none of the accesses are coalesced.
Even when applying data transformations, for input sizes S and W the value is below
the threshold and the code gets mapped to the CPU. Only input size A is mapped to
the GPU. All programs are again mapped to the right device.

7.7. Dynamic Index Reordering

The benchmarks bt and sp contain candidate regions for dynamic index reordering.
Figure 15 shows the performance of the benchmarks with different input sizes when
applying dynamic index reordering to none, the first, or the second of those regions.
The performance is normalized to the runtime when the transformation is not applied.
In each case, the runtime is broken up into the runtimes for the two candidate code
regions, the overhead of the transformation (if applicable), and the rest of the program.

The first candidate region makes up only a small fraction of the overall runtime of
both benchmarks; 1% to 3% on the NVIDIA and 1% to 11% on the AMD system. When
applying dynamic index reordering here, the performance of this region barely improves
because there are not many memory accesses that benefit from the transformation.
The cost of reordering the data thus often outweighs the benefits, which leads to minor
slowdowns overall.

The second region, on the other hand, makes up a larger chunk of the overall runtime.
Applying dynamic index reordering significantly reduces the runtime of this region.
Since the overhead of data reordering is comparatively small, big overall runtime
reductions are achieved by applying the transformation to this region: up to 75% on
the NVIDIA system and 62% on the AMD system.

Similar to predicting on which device to run a program, we also use decision trees
to determine when dynamic index reordering is beneficial (see Section 5.4 for details).
Applying this model for bt and sp achieves an accuracy of 79% on the NVIDIA and 94%
on the AMD system.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 42, Publication date: December 2014.

42:20 Z. Wang et al.

Fig. 16. Speedup averaged across inputs of the manual SNU code and our model on systems with integrated
GPUs.

7.8. Performance on Integrated Systems

GPU technology is constantly evolving. To check that our approach also works on new
devices, we evaluated it on two systems with integrated GPUs: AMD Llano (A8-3850),
and Intel Ivy Bridge (Core i5 3570K). Figure 16 shows a summary of the results using
the SNU implementation and our predictive modeling approach. The manual SNU
code only achieves speedups of 1.6× and 0.7× on average compared to 3.1× and 2.7×
of our approach.

The integrated GPUs on these systems are less powerful than the discrete GPUs
that we evaluated previously. This demonstrates even more the need for a model that
only maps code to the GPU when it is beneficial. Integrated GPUs share the system
memory with the CPU, making data movements between the devices cheaper or even
unnecessary in the case of Intel IvyBridge. Because most benchmarks in the NAS
parallel benchmark suite are compute intensive, this advantage does not lead to im-
proved performance overall. Nonetheless, our portable ML-based approach is still able
to achieve a speedup on average.

8. RELATED WORK

GPU Programming Languages. Programming support for GPUs has been a critical
issue, and CUDA has been a significant reason for the success of general-purpose com-
puting on GPUs. Impressive performance has been achieved with orders of magnitude
improvements found for certain applications [Ryoo et al. 2008]. Despite the popularity
of CUDA, it mainly targets NVIDIA GPUs and is not directly portable to other GPUs
or more general heterogeneous architectures. OpenCL has the promise of having more
general applicability at the cost of a potentially more complex programming model.
Due to the relative immaturity of language implementations, recent work has focused
on how to improve performance either using different code transformations [Lee and
Eigenmann 2010] or partitioning across multiple GPUs [Kim et al. 2011]. The bench-
marks considered are largely those well fitted to GPU architectures. In Bordawekar
et al. [2010], Grewe and O’Boyle [2011], and Lee et al. [2010a], it was shown that
although GPUs can often give significant performance for kernels, in some cases it is
better not to use the GPU but to use the multicore instead.

High-Level Programming Models. There have been several different approaches to
generating GPU code from simpler higher-level languages. In C to CUDA [Baskaran
et al. 2010], nested loops are represented in a polyhedral framework that when mapped
to the GPU give excellent performance. However, the set of programs that can be han-
dled this way is extremely small and cannot be applied to more general parallel pro-
grams with arbitrary data dependence and control-flow structure. In Sponge [Hormati

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 42, Publication date: December 2014.

Automatic and Portable Mapping of Data Parallel Programs to OpenCL 42:21

et al. 2011], again good performance is achieved. The benchmarks used were rewritten
from the Parboil benchmarks (a CUDA benchmark suite) in StreamIt format, so again
the benchmarks are those that are well fitted to GPUs. Apart from Gregg et al. [2010],
none of these approaches uses OpenCL, and most of them rely on the user to provide a
separate kernel version for CPUs and GPUs. We circumvent this problem by automat-
ically generating multiversions of the input program and building a portable machine
learning model to automatically select a code version at runtime.

Automatic Generation of GPU Programs. The OpenMPC compiler [Lee et al. 2009]
translates OpenMP to CUDA programs. Unlike our approach, OpenMPC neither per-
forms dynamic data transformations nor uses predictive modeling to select a code
version across different GPU architectures. The OpenACC programming interface
[OpenACC 2013] defines a set of compiler directives for expressing loop- and region-
based parallelism. Using an OpenACC enabling compiler, the parallelism can be trans-
lated into OpenCL or CUDA implementations or be offloaded onto an accelerator. In
Baskaran et al. [2010], CUDA programs are automatically generated from sequen-
tial, affine C programs using the polyhedral model. In all preceding approaches, the
code always gets executed on the GPU. Prior work on automatic generation of parallel
GPU code from sequential programs also includes Par4ALL [Amini et al. 2012], PPCG
[Verdoolaege et al. 2013], and that of Wang et al. [2014a]. Unlike our approach, they
do not consider the problem of selecting the most suitable device from the host CPU
and the GPU to run the code.

Optimizing GPU Programs. CGCM [Jablin et al. 2011] is a CPU-GPU communi-
cation system to optimize CUDA applications between the host and the GPU. In the
following work [Jablin et al. 2012], DyManD was proposed to overcome the limitation
of CGCM by replacing static analysis with a dynamic runtime system. DyManD is able
to optimize programs that cannot automatically handle CGCM. CUDA-lite [Ueng et al.
2008] relies on programmer annotations to exploit GPU performance by coalescing
memory accessing. Sung et al. [2010] propose a data layout transformation for struc-
ture grid programs (e.g., stencil code). The input to their tools are arrays that are in
a restricted form. Dymaxion [Che et al. 2011] allows programmers to manually apply
index reordering for CUDA programs. In contrast to Dymaxion, which has a single
data layout for the entire program, our compiler automatically applies dynamic index
reordering to parts of the program when such a transformation is profitable. Further-
more, in Dymaxion, index reordering can only be applied when transferring data from
the host to the GPU, whereas our technique is applied when the data is already on
the GPU. Recently, Kayiran et al. [2013] proposed a dynamic scheduling approach to
determine the optimal number of GPU threads to reduce the resource contention on
the GPU. The StarPU runtime system provides a unified framework for scheduling
numerical kernels on heterogeneous systems [Augonnet et al. 2011]. StarPU requires
the developers to provide a cost model for each task and uses heuristics to dynamically
schedule parallel tasks. This fine-grained, runtime-based approach complements our
compiler-based approach.

Data Layout Transformation. Data layout is crucial to application performance, and
there is an extensive body of work for data layout transformation on CPUs. A good
review of existing CPU techniques could be found in the report of Karlsson [2009].
DL is a runtime data layout transformation framework for GPU applications [Sung
et al. 2012]. It offers several useful data layout transformations, such as transforming
array-of-structures to/from structure-of-arrays and in-place layout conversion. Prior
work also includes Dymaxion [Che et al. 2011] and in-place matrix transposition [Sung
et al. 2014; Gustavson et al. 2012]. Impressive results have been achieved using those

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 42, Publication date: December 2014.

42:22 Z. Wang et al.

approaches. Unlike prior work that relies on the programmer to determine the cost and
benefit of data transformations, our approach uses machine learning to automatically
learn a cost model that automatically decides whether a transformation is beneficial
for a given program, input, and hardware.

Mapping Parallel Programs. Most prior research on parallelism mapping has fo-
cused on building platform-specific heuristics [Ramanujam and Sadayappan 1989;
Huang et al. 2009] for a certain class of platforms. Such an approach is tightly coupled
with a specific architecture and as a result cannot adapt to the fast-evolving GPU
architecture. Our predictive model, on the other hand, can adapt to the change of
hardware and compilers by automatically learning from data. Some other approaches
use iterative compilation and search to tune GPU programs [Datta et al. 2008]. How-
ever, these approaches can lead to excessive profile runs for a single program. Our
recent work [Grewe et al. 2013b; Wen et al. 2014] takes the machine learning–based
approach further and automatically partitions GPU kernels between the CPU and
GPU in the presence of workload contention (i.e., multiple programs compete for the
shared computing resources). Our scheme achieves significant speedups over a GPU-
only scheme, demonstrating the advantages of machine learning–based parallelism
mappings.

Predictive Modeling. In addition to optimizing sequential programs [Cooper et al.
1999], recent studies have shown that predictive modeling is effective in optimizing
parallel programs [Wang and O’Boyle 2009, 2010, 2013; Collins et al. 2013; Emani
et al. 2013; Wang et al. 2014b] and scheduling parallel workload [Grewe et al. 2011].
The Qilin [Luk et al. 2009] compiler uses offline profiling to create a regression model
that is employed to predict a data parallel program’s execution time. Unlike Qilin, our
approach does not require any profiling runs during compilation. Recently, machine
learning has been used to predict the best mapping of a single OpenCL kernel [Grewe
and O’Boyle 2011; Ogilvie et al. 2014]. In contrast to this work, our compiler automat-
ically transforms large OpenMP programs into OpenCL-based programs and predicts
whether the OpenMP or OpenCL code gives the best performance on the system.

9. CONCLUSION AND FUTURE WORK

This article has described a compilation approach that takes shared memory programs
written in OpenMP and outputs OpenCL code targeted at GPU-based heterogeneous
systems. The proposed approach uses loop and array transformations to improve the
memory behavior of the generated code. OpenCL is a portable standard, and we evalu-
ate its performance on different platforms: NVIDIA GeForce and AMD Radeon discrete
GPUs, as well as integrated GPUs. This approach was applied to the whole NAS paral-
lel benchmark suite, where we show that in certain cases the OpenCL code generated
can produce significant speedups (up to 202×). However, GPUs are not best suited for
all programs, and in some cases it is more profitable to use the host multicore instead.
We developed an approach based on machine learning that determines for each new
program whether the multicore CPU or the GPU is the best target. If the multicore is
selected, we run the appropriate OpenMP code, as it currently outperforms OpenCL
on multicores. This model is learned on a per-platform basis, and we demonstrate that
the model adapts to different platforms and achieves consistent prediction accuracy.
We thus build on the portability of OpenCL as a language by developing a system that
is performance portable as well.

Future work will examine a much greater range of program optimizations. In par-
ticular, we wish to examine exploitation of the GPU memory hierarchy and apply
autovectorization; both of these are likely to benefit the AMD Radeon and other GPUs.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 42, Publication date: December 2014.

Automatic and Portable Mapping of Data Parallel Programs to OpenCL 42:23

REFERENCES

AMD. 2013. AMD/ATI Stream SDK. Retrieved October 17, 2014, from http://www.amd.com/stream/.
AMD. 2014. CodeXL—Powerful Debugging, Profiling & Analysis. Retrieved October 17, 2014, from

developer.amd.com/tools-and-sdks/opencl-zone/codexl/.
Mehdi Amini, Onig Goubier, Serge Guelton, Janice Onanian McMahon, François Xavier Pasquier, Grégoire

Péan, and Pierre Villalon. 2012. Par4All: From convex array regions to heterogeneous computing. In
Proceedings of the 2nd International Workshop on Polyhedral Compilation Techniques (IMPACT’12).

Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacrenier. 2011. StarPU: A unified
platform for task scheduling on heterogeneous multicore architectures. Concurrency and Computation:
Practice and Experience 23, 2, 187–198.

Muthu M. Baskaran, J. “Ram” Ramanujam, and Ponuswamy Sadayappan. 2010. Automatic C-to-CUDA code
generation for affine programs. In Compiler Construction. Lecture Notes in Computer Science, Vol. 6011.
Springer, 244–263.

Rajesh Bordawekar, Uday Bondhugula, and Ravi Rao. 2010. Believe it or not! Multi-core CPUs can match
GPU performance for a FLOP-intensive application! In Proceedings of the 19th International Conference
on Parallel Architectures and Compilation Techniques (PACT’10). 537–538.

Gautam Chakrabarti, Vinod Grover, Bastiaan Aarts, Xiangyun Kong, Manjunath Kudlur, Yuan Lin, Jaydeep
Marathe, Mike Murphy, and Jian-Zhong Wang. 2012. CUDA: Compiling and optimizing for a GPU
platform. Procedia Computer Science 9, 1910–1919.

Shuai Che, Jeremy W. Sheaffer, and Kevin Skadron. 2011. Dymaxion: Optimizing memory access patterns for
heterogeneous systems. In Proceedings of the International Conference for High Performance Computing,
Networking, Storage, and Analysis (SC’11). Article No. 13.

Alexander Collins, Christian Fensch, Hugh Leather, and Murray Cole. 2013. MaSiF: Machine learning
guided auto-tuning of parallel skeletons. In Proceedings of the 20th International Conference on High
Performance Computing (HiPC’13). 186–195.

Keith D. Cooper, Philip J. Schielke, and Devika Subramanian. 1999. Optimizing for reduced code space using
genetic algorithms. In Proceedings of the ACM SIGPLAN Workshop on Languages, Compilers, and Tools
for Embedded Systems (LCTES’99). 1–9.

Anthony Danalis, Gabriel Marin, Collin McCurdy, Jeremy S. Meredith, Philip C. Roth, Kyle Spafford, Vinod
Tipparaju, and Jeffrey S. Vetter. 2010. The scalable heterogeneous computing (SHOC) benchmark suite.
In Proceedings of the 3rd Workshop on General-Purpose Computation on Graphics Processing Units
(GPGPU’10). 63–74.

Kaushik Datta, Mark Murphy, Vasily Volkov, Samuel Williams, Jonathan Carter, Leonid Oliker, David
Patterson, John Shalf, and Katherine Yelick. 2008. Stencil computation optimization and auto-tuning
on state-of-the-art multicore architectures. In Proceedings of the ACM/IEEE Conference on Supercom-
puting (SC’08). Article No. 4.

Alexandre E. Eichenberger, Peng Wu, and Kevin O’Brien. 2004. Vectorization for SIMD architectures with
alignment constraints. In Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI’04). 82–93.

Murali K. Emani, Zheng Wang, and Michael F. P. O’Boyle. 2013. Smart, adaptive mapping of parallelism in
the presence of external workload. In Proceedings of the IEEE/ACM International Symposium on Code
Generation and Optimization (CGO’13). 1–10.

Chris Gregg, Jeff Brantley, and Kim Hazelwood. 2010. Contention-Aware Scheduling of Parallel Code
for Heterogeneous Systems. Technical Report. Department of Computer Science, University of
Virginia.

Dominik Grewe and Michael O’Boyle. 2011. A static task partitioning approach for heterogeneous sys-
tems using OpenCL. In Proceedings of the 20th International Conference on Compiler Construction:
Part of the Joint European Conferences on Theory and Practice of Software (CC’11/ETAPS’11). 286–
305.

Dominik Grewe, Zheng Wang, and Michael F. P. O’Boyle. 2013a. Portable mapping of data parallel programs
to OpenCL for heterogeneous systems. In Proceedings of the IEEE/ACM International Symposium on
Code Generation and Optimization (CGO’13). 1–10.

Dominik Grewe, Zheng Wang, and Michael F. P. O’Boyle. 2013b. OpenCL task partitioning in the presence
of GPU contention. In Languages and Compilers for Parallel Computing. Lecture Notes in Computer
Science, Vol. 8664. Springer, 87–101.

Dominik Grewe, Zheng Wang, and Michael F. P. O’Boyle. 2011. A workload-aware mapping approach for
data-parallel programs. In Proceedings of the 6th International Conference on High Performance and
Embedded Architectures and Compilers (HiPEAC’11). 117–126.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 42, Publication date: December 2014.

http://www.amd.com/stream/.

42:24 Z. Wang et al.

Fred Gustavson, Lars Karlsson, and Bo Kågström. 2012. Parallel and cache-efficient in-place matrix storage
format conversion. ACM Transactions on Mathematical Software 38, 3, Article No. 17.

Amir Hormati, Mehrzad Samadi, Mark Woh, Trevor N. Mudge, and Scott A. Mahlke. 2011. Sponge:
Portable stream programming on graphics engines. In Proceedings of the 16th International Conference
on Architectural Support for Programming Languages and Operating Systems (ASPLOS XVI). 381–
392.

Lei Huang, Deepak Eachempati, Marcus W. Hervey, and Barbara Chapman. 2009. Exploiting global opti-
mizations for OpenMP programs in the OpenUH compiler. In Proceedings of the 14th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP’09). 289–290.

Thomas B. Jablin, James A. Jablin, Prakash Prabhu, Feng Liu, and David I. August. 2012. Dynamically
managed data for CPU-GPU architectures. In Proceedings of the 10th International Symposium on Code
Generation and Optimization (CGO’12). 165–174.

Thomas B. Jablin, Prakash Prabhu, James A. Jablin, Nick P. Johnson, Stephen R. Beard, and David I.
August. 2011. Automatic CPU-GPU communication management and optimization. In Proceedings of
the 32nd ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’11).
142–151.

Lars Karlsson. 2009. Blocked in-place transposition with application to storage format conversion. Technical
Report UMINF 09.01. Umea University, Umea, Sweden.

Onur Kayiran, Adwait Jog, Mahmut Taylan Kandemir, and Chita Ranjan Das. 2013. Neither more nor less:
Optimizing thread-level parallelism for GPGPUs. In Proceedings of the 22nd International Conference
on Parallel Architectures and Compilation Techniques (PACT’13). 157–166.

Jungwon Kim, Honggyu Kim, Joo Hwan Lee, and Jaejin Lee. 2011. Achieving a single compute device image
in OpenCL for multiple GPUs. In Proceedings of the 16th ACM Symposium on Principles and Practice
of Parallel Programming (PPoPP’11). 277–288.

Jaekyu Lee, Nagesh B. Lakshminarayana, Hyesoon Kim, and Richard Vuduc. 2010b. Many-thread aware
prefetching mechanisms for GPGPU applications. In Proceedings of the 43rd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO’43). 213–224.

Seyong Lee and Rudolf Eigenmann. 2010. OpenMPC: Extended OpenMP programming and tuning for GPUs.
In Proceedings of the ACM IEEE International Conference for High Performance Computing, Networking,
Storage, and Analysis (SC’10). 1–11.

Seyong Lee, Seung-Jai Min, and Rudolf Eigenmann. 2009. OpenMP to GPGPU: A compiler framework
for automatic translation and optimization. In Proceedings of the 14th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP’09). 101–110.

Victor W. Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Daehyun Kim, Anthony D. Nguyen,
Nadathur Satish, Mikhail Smelyanskiy, Srinivas Chennupaty, Per Hammarlund, Ronak Singhal, and
Pradeep Dubey. 2010a. Debunking the 100X GPU vs. CPU myth: An evaluation of throughput computing
on CPU and GPU. In Proceedings of the 37th Annual International Symposium on Computer Architecture
(ISCA’10). 451–460.

LLVM. 2013. The LLVM Compiler Infrastructure Project. Retrieved October 18, 2014, from http://llvm.org/.
John Lu and Keith D. Cooper. 1997. Register promotion in C programs. In Proceedings of the ACM

SIGPLAN Conference on Programming Language Design and Implementation (PLDI’97). 308–
319.

Chi-keung Luk, Sunpyo Hong, and Hyesoon Kim. 2009. Qilin: Exploiting parallelism on heterogeneous
multiprocessors with adaptive mapping. In Proceedings of the 42nd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO’42). 45–55.

Christos Margiolas and Michael F. P. O’Boyle. 2014. Portable and transparent host-device communication
optimization for GPGPU environments. In Proceedings of the Annual IEEE/ACM International Sympo-
sium on Code Generation and Optimization (CGO’14). 55.

NVIDIA Corp. 2013. NVIDIA CUDA. Retrieved October 18, 2014, from http://developer.nvidia.com/object/
cuda.html.

William Ogilvie, Pavlos Petoumenos, Zheng Wang, and Hugh Leather. 2014. Fast automatic heuristic con-
struction using active learning. In Proceedings of the Workshop on Languages and Compilers for Parallel
Computing (LCPC’14).

Omini Compiler Project. 2009. NAS Parallel Benchmark v2.3 OpenMP C Version. Retrieved October 18,
2014, from http://www.hpcs.cs.tsukuba.ac.jp/omni-compiler/download/download-benchmarks.html.

OpenACC. 2013. The OpenACC Application Program Interface. Retrieved October 18, 2014, from http://www.
openacc-standard.org/.

PathScale Inc. 2013. NPB2.3-OpenACC-C. Retrieved October 18, 2014, from https://github.com/pathscale/
NPB2.3-OpenACC-C.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 42, Publication date: December 2014.

http://llvm.org/.
http://developer.nvidia.com/object/cuda.html
http://developer.nvidia.com/object/cuda.html
http://www.hpcs.cs.tsukuba.ac.jp/omni-compiler/download/download-benchmarks.html.
http://www.openacc-standard.org/.
http://www.openacc-standard.org/.
https://github.com/pathscale/NPB2.3-OpenACC-C
https://github.com/pathscale/NPB2.3-OpenACC-C

Automatic and Portable Mapping of Data Parallel Programs to OpenCL 42:25

Portland Group. 2010. PGI Fortran & C Accelerator Programming Model. White Paper. Retrieved October
18, 2014, from http://www.pgroup.com/lit/whitepapers/pgi_accel_prog_model_1.2.pdf.

J. Ross Quinlan. 1993. C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco, CA.
Jagannathan Ramanujam and Ponnuswamy Sadayappan. 1989. A methodology for parallelizing programs

for multicomputers and complex memory multiprocessors. In Proceedings of the ACM/IEEE Conference
on Supercomputing (Supercomputing’89). 637–646.

Shane Ryoo, Christopher I. Rodrigues, Sara S. Baghsorkhi, Sam S. Stone, David B. Kirk, and Wen-mei W.
Hwu. 2008. Optimization principles and application performance evaluation of a multithreaded GPU
using CUDA. In Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP’08). 73–82.

Sangmin Seo, Gangwon Jo, and Jaejin Lee. 2011. Performance characterization of the NAS Parallel Bench-
marks in OpenCL. In Proceedings of the IEEE International Symposium on Workload Characterization
(IISWC’11). 137–148.

Jaewoong Sim, Aniruddha Dasgupta, Hyesoon Kim, and Richard Vuduc. 2012. A performance analysis
framework for identifying potential benefits in GPGPU applications. In Proceedings of the 17th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP’12). 11–22.

Bjarne Steensgaard. 1996. Points-to analysis in almost linear time. In Proceedings of the 23rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’96). 32–41.

John A. Stratton, Vinod Grover, Jaydeep Marathe, Bastiaan Aarts, Mike Murphy, Ziang Hu, and Wen-mei W.
Hwu. 2010. Efficient compilation of fine-grained SPMD-threaded programs for multicore CPUs. In Pro-
ceedings of the 8th Annual IEEE/ACM International Symposium on Code Generation and Optimization
(CGO’10). 111–119.

I-Jui Sung, Juan Gómez-Luna, José Marı́a González-Linares, Nicolás Guil, and Wen-Mei W. Hwu. 2014. In-
place transposition of rectangular matrices on accelerators. In Proceedings of the 19th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP’14). 207–218.

I-Jui Sung, Geng D. Liu, and Wen-Mei W. Hwu. 2012. DL: A data layout transformation system for hetero-
geneous computing. In Proceedings of Innovative Parallel Computing (InPar). 1–11.

I-Jui Sung, John A. Stratton, and Wen-Mei W. Hwu. 2010. Data layout transformation exploiting memory-
level parallelism in structured grid many-core applications. In Proceedings of the 19th International
Conference on Parallel Architectures and Compilation Techniques (PACT’10). 513–522.

Georgios Tournavitis, Zheng Wang, Björn Franke, and Michael O’Boyle. 2009. Towards a holistic approach
to auto-parallelization. In Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI’09). 177–187.

Sain-Zee Ueng, Melvin Lathara, Sara S. Baghsorkhi, and Wen-Mei W. Hwu. 2008. CUDA-Lite: Reducing
GPU programming complexity. In Languages and Compilers for Parallel Computing. Lecture Notes in
Computer Science, Vol. 5335. Springer, 1–15.

University of Illinois at Urbana-Champaign (UIUC). 2013. Parboil Benchmark Suite. Retrieved October 18,
2014, from http://impact.crhc.illinois.edu/Parboil/parboil.aspx.

Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, José Ignacio Gómez, Christian Tenllado, and Francky
Catthoor. 2013. Polyhedral parallel code generation for CUDA. ACM Transactions on Architecture and
Code Optimization 9, 4, Article No. 54.

Zheng Wang and Michael F. P. O’Boyle. 2009. Mapping parallelism to multi-cores: A machine learning based
approach. In Proceedings of the 14th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP’09). 75–84.

Zheng Wang and Michael F. P. O’Boyle. 2010. Partitioning streaming parallelism for multi-cores: A machine
learning based approach. In Proceedings of the 19th International Conference on Parallel Architectures
and Compilation Techniques (PACT’10). 307–318.

Zheng Wang and Michael F. P. O’Boyle. 2013. Using machine learning to partition streaming programs. ACM
Transactions on Architecture and Code Optimization 10, 3, Article No. 20.

Zheng Wang, Daniel Powell, Björn Franke, and Michael F. P. O’Boyle. 2014a. Exploitation of GPUs for the
parallelisation of probably parallel legacy code. In Compiler Construction. Lecture Notes in Computer
Science, Vol. 8409. Springer, 154–173.

Zheng Wang, Georgios Tournavitis, Björn Franke, and Michael F. P. O’Boyle. 2014b. Integrating profile-
driven parallelism detection and machine-learning-based mapping. ACM Transactions on Architecture
and Code Optimization 11, 1, Article 2.

Yuan Wen, Zheng Wang, and Michael O’Boyle. 2014. Smart multi-task scheduling for OpenCL programs on
CPU/GPU heterogeneous platforms. In Proceedings of the 21st Annual IEEE International Conference
on High Performance Computing (HiPC’14).

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 42, Publication date: December 2014.

http://www.pgroup.com/lit/whitepapers/pgi_accel_prog_model_1.2.pdf.
http://impact.crhc.illinois.edu/Parboil/parboil.aspx.

42:26 Z. Wang et al.

Michael Wolfe. 2010. Implementing the PGI accelerator model. In Proceedings of the 3rd Workshop on
General-Purpose Computation on Graphics Processing Units (GPGPU’10).

Yi Yang, Ping Xiang, Jingfei Kong, and Huiyang Zhou. 2010. A GPGPU compiler for memory optimization and
parallelism management. In Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI’10). 86–97.

Received December 2013; revised October 2014; accepted October 2014

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 42, Publication date: December 2014.

