
1

Combining Graph-based Learning with Automated
Data Collection for Code Vulnerability Detection

Huanting Wang1,∗, Guixin Ye1,∗, Zhanyong Tang1,�, Shin Hwei Tan2

Songfang Huang3, Dingyi Fang1, Yansong Feng4, Lizhong Bian5, and Zheng Wang6,�

1. Northwest University, China; 2. Southern University of Science and Technology, China;
3. Alibaba DAMO Academy; 4. Peking University, China;

5. Alipay (Hangzhou) Information & Technology Co., Ltd.; 6. University of Leeds, U. K.

Abstract—This paper presents FUNDED1, a novel learning
framework for building vulnerability detection models. FUNDED
leverages the advances in graph neural networks (GNNs) to
develop a novel graph-based learning method to capture and
reason about the program’s control, data, and call dependencies.
Unlike prior work that treats the program as a sequential
sequence or an untyped graph, FUNDED learns and operates
on a graph representation of the program source code, in which
individual statements are connected to other statements through
relational edges. By capturing the program syntax, semantics
and flows, FUNDED finds better code representation for the
downstream software vulnerability detection task. To provide
sufficient training data to build an effective deep learning model,
we combine probabilistic learning and statistical assessments to
automatically gather high-quality training samples from open-
source projects. This provides many real-life vulnerable code
training samples to complement the limited vulnerable code
samples available in standard vulnerability databases.

We apply FUNDED to identify software vulnerabilities at the
function level from program source code. We evaluate FUNDED
on large real-world datasets with programs written in C, Java,
Swift and Php, and compare it against six state-of-the-art code
vulnerability detection models. Experimental results show that
FUNDED significantly outperforms alternative approaches across
evaluation settings.

Index Terms—Software Vulnerability, Code Vulnerability De-
tection, Deep Learning, Deep Graph Neural Networks

I. INTRODUCTION

Software vulnerabilities are responsible for many system
attacks [1] and data breach incidents [2]. Machine learning is
a viable means for constructing tools and models to identify
common software vulnerabilities. It works by first learning,
from training samples, the latent patterns indicative of vulner-
able programs. A machine-learned model can then be applied
to new software projects to identify potentially vulnerable code
that exhibits similar patterns as those vulnerable samples seen
in the training data. There is now ample evidence showing that
machine learning techniques can exceed expert-crafted rules
[3] for detecting common code vulnerabilities or bugs.

Recent studies have leveraged deep learning (DL) to reason
about program structures to identify potential software vul-
nerabilities at the source code [4, 5, 6, 3, 7]. Compared to

This work was supported in part by the National Natural Science Foun-
dation of China (NSFC) under grant agreements 61972314, 61672427 and
61872294, The International Cooperation Projects of Shaanxi Province under
grant agreements 2019KW-009 and 2020KWZ-013, an Ant Financial Science
funded project and an Alibaba Innovative Research Program.
� Corresponding authors: Zhanyong Tang (zytang@nwu.edu.cn) and

Zheng Wang (z.wang5@leeds.ac.uk))
*Huanting Wang and Guixin Ye are the co-first authors.
1FUNDED = Flow-sensitive vUlNerability coDE Detection.

classical machine learning techniques, DL has the advantage
of not requiring expert involvement to tune representations for
program structures manually; instead, it automatically captures
and determines them from training samples.

Existing DL-based approaches for program modeling typi-
cally use recurrent neural networks (RNNs) such as the Long
Short-Term Memory (LSTM) or a variant of it [5, 6, 8, 3, 7].
These approaches work by treating source code and its corre-
sponding program structure, such as the abstract syntax tree
(AST), as a sequence of tokens. However, LSTM is designed
for sequential sequences [9] and is ill-suited for modeling the
well-structured control and data flows of programs. As a result,
prior LSTM-based methods only capture the shallow, surface
structure of the source code text and fail to capitalize on the
rich and well-defined semantics of the program structure. As
shown in our evaluation, existing LSTM-like approaches often
give poor accuracy, either missing vulnerabilities or giving
overwhelmingly false-positive results.

To better model the complex code structures - which were
traditionally represented as graph structures in compilers for
code analysis [10] - we need an approach that could directly
operate on and learn from the graph representation of the
code. Doing so will allow the learning framework to preserve
and reason about much of the control and data flow infor-
mation for capturing the essential code structures for many
software vulnerabilities. For example, to detect the use-after-
free vulnerability, we need to know where and when a buffer
is allocated and deallocated across multiple execution paths.

We introduce FUNDED, a better approach for modeling code
structures. FUNDED operates on graph representations of the
program source code with the capability to learn and aggregate
multiple code relationships. It achieves this by leveraging the
recently proposed gated graph neural networks (GGNNs) [11].
By directly operating on a graph representation, the graph
neural networks (GNNs) have shown astounding successes
in social networks [12], and knowledge graphs [13] and
even compiled binaries [14]. While GNN provides a good
starting point, applying it to develop a practical and efficient
framework for software vulnerability detection is not trivial.
As a standard GNN operates on a single graph representation
with untyped edges, it cannot distinguish between the control
and data flow information. However, such information is
essential for capturing vulnerable and buggy code patterns. As
demonstrated by our evaluation, when ignoring the different
code relationships, a recent work that uses a vanilla GNN
[15] gives marginal improvement compared to the LSTM

2

alternatives for code vulnerability detection.
FUNDED extends the GNN’s capability to distinguish and

model multiple code relationships (including data, control,
operation order, and operand values). This is achieved by
first encoding different code relationships in different relation
graphs, and then using learnable, relation-specific functions to
propagate and aggregate information across relation graphs.
By representing the input program as multiple relation graphs
with explicit control and data flows or syntactic information,
our new graph model captures richer intra-program relations
than prior GNN-based approaches [15]. This richer set of
relationships improves the model’s ability in learning useful
program representation, leading to better performance of the
downstream code vulnerability detection task. As we will show
later, by employing the GGNN to model and distinguish the
rich code relationships, our approach significantly outperforms
alternative graph-based methods.

While our novel GNN extension provides a potentially pow-
erful capability for learning code representation, its potential
can only be unlocked with sufficient training data. Typical
DL algorithms require up to millions of examples to learn an
efficient model [16], but the scarcity of real-life vulnerable
training samples is a common problem [3]. The lack of
training data limits the quality of machine-learned detection
models, as they have very sparse training data for typical
high-dimensional program space. Some prior approaches solve
this problem using program generation for compiler testing
[17]. However, synthetic programs have two significantly
drawbacks. They are biased by the grammars, templates, or
models used to generate the programs, and may not reflect the
diverse and evolving patterns of real-life programs. Hence,
models learned over synthetic data are hard to generalize.

Our solution for addressing the scarcity of vulnerability
trainining data is to utilize the wealthy historical information
in open-source projects. We achieve this by using an off-line
trained model to predict which code commit is used to patch
a code vulnerability. The vulnerability-relevant commit - i.e.,
a code revision that provides a patch for a code vulnerability
- is then used to locate a vulnerable source code snippet from
the version before the patch commit.

Translating this high-level idea to build a practical data
collection system is, however, not trivial. Collecting a large
number of high-quality vulnerable code samples are challeng-
ing because we need to exclude commits that are irrelevant
to software vulnerabilities (e.g., code commits for enhancing
performance or functionalities but not repairing a vulnera-
bility). Failure to exclude such benign code snippets in our
training samples will confuse the machine learning algorithm.
Meanwhile, it is impractical to ask developers to manually
check all the training samples due to the large volume of
data collected. Thus, we must find a better measure to ensure
the quality of the collected data and only ask for developer
intervention when necessary.

Prior work on vulnerable training sample collection [18, 19,
20] is characterized by a one-size-fits-all assumption. They use
a single monolithic model for locating vulnerability-relevant
commits. These approaches often fail to examine whether the
model fits the current inputs or whether another model would

perform better. However, machine learning is well known to
be brittle to uncertainties. When facing an situation that is
not seen before, machine learning techniques often produce
an answer with a high probability. The high probability in
the uncertain situations often lead to poor prediction results
– in our case, this will introduce noise into training data and
deteriorate the quality of the learned model.

To ensure the quality of the training data, we take a
different approach by adopting a “mixture of experts” scheme
[21] to collect training data from open-source projects. Our
approach reduces data noise by employing multiple predictive
models (referred to as experts) and only using predictions
(or expert recommendations) that we have high confidence
on the model’s output. To evaluate the confidence (or cer-
tainty) of each recommendation, we apply Conformal Pre-
diction [22] to measure the statistically valid confidence for
the predictions given by individual models. In this way, we
use only recommendations with high confidence. Given this
ability to measure the confidence of predictions, we only ask
developers to inspect low-confident predictions to provide the
ground-truth, which then serves as additional training data
to improve the data collection model over time. We show
that our mixture-of-expert approach improves the quality of
the collected training data, leading to a better-performing
vulnerability detection model. This also provides a scheme to
gradually and continuously update the data collection model
with minimum developer involvement.

We demonstrate the benefits of FUNDED by applying it
to detect function-level vulnerabilities from program source
code2. We thoroughly evaluate FUNDED on large real-life
datasets of code commit history and vulnerable programs
written in C, Java, Php and Swift. We compare FUNDED
against six state-of-the-art (SOTA) learning-based detection
methods for software bugs or vulnerabilities [4, 5, 16, 6, 3, 15],
and five SOTA methods for automatic vulnerable code sample
collection [18, 19, 23, 20, 24]. Experimental results show that
FUNDED consistently outperforms competing methods across
evaluation settings, by discovering more code vulnerabilities
with a lower false-positive rate.
Contributions. This paper is the first to:
• show how a multi-relational, gated graph neural network

can be developed for vulnerability detection (Sec. IV);
• combine probabilistic learning and statistical assessment

to develop a “mixture-of-experts” approach to address the
shortage of vulnerable training code samples (Sec. V);

• exploit transfer learning to port vulnerability detection
models across programming languages (Sec. VII-D);

II. BACKGROUND

A. Problem Scope

FUNDED is a general learning framework for code vulner-
ability detection. In this work, we apply FUNDED to identify
vulnerabilities from the source code. FUNDED predicts if a
given function or method contains a potential vulnerability and
of what type. Here, the target function may invoke standard
library calls and user-defined functions. Note that our intention

2Code and data available at: https://github.com/HuantWang/FUNDED NISL

3

1 attr_value = (char*)malloc(attr_len + 1);
2 ...
3 else if(!strcmp(attr_name, "dateadded"))
4 {
5 ae->date_added = atoi(attr_value);
6 free(attr_value);
7 }
8 else
9 free(attr_value);

Fig. 1. Benign code sample from GitHub. VULDEEPECKER,
µVULDEEPECKER and LIN et al. all misclassify the code containing
a “double-free” vulnerability for buffer attr_value.

 attr_value 3if

else

1

9
free

(attr_value)

… = atoi

(attr_value)
5

free

(attr_value)
6

‘attr_value’Dependence Flow

Control Flow

Fig. 2. Control and data flow for buffer attr_value in Figure 1. The line
number is given in each rectangle box.

is not to uncover a new type of vulnerabilities. Instead, we
want to detect if a new, unseen piece of code contains a vul-
nerable code pattern that is similar to one seen in the training
dataset. Therefore, FUNDED is useful for detecting common,
repeatedly occurred software vulnerabilities (or bugs). To this
end, our work focuses on detecting common vulnerabilities
(or weaknesses) defined in the common weakness enumeration
(CWE) database, and is not concerned about non-vulnerable
bugs like performance issues.

B. The Need for Flow-sensitive Methods

To show the need for modeling the control and data
flows, consider the benign code example given in Figure 1.
VULDEEPECKER [5], µVULDEEPECKER [6] and LIN et al.
[3] are SOTA vulnerability detection models. They build
upon bidirectional LSTM (BiLSTM) [25] - a sequence deep-
learning model. For this example, they all incorrectly classify
the code containing a double-free vulnerability. The root cause
for this false positive is that a sequence model has to linearize
and treat the code structure as a sequential sequence of
tokens, which omits the control flow divergence (see Figure 2).
Consequently, they regard dynamic buffer attr_value (line
9) to be deallocated again after it being freed at line 6.

For this example, we want to capture the control and data
flow of the target program by using a flow-sensitive decision
model. If we can do that, we can then infer that the buffer
attr_value at line 9 is deallocated in a different execution
path and hence will not lead to a double-free vulnerability. For
more general cases, we need to capture syntactic information
(when trading sequential representations for graphs), as well as
the control and data flows or any other code relationships that
may be essential for the downstream processing task. FUNDED
is designed to offer such capabilities by extending the recently
proposed GNN architecture.

III. OVERVIEW OF OUR APPROACH

FUNDED consists of two key components. The first is a
GNN-based model to identify potential software vulnerabilities

TABLE I
GITHUB COMMIT EXAMPLES

Code revisions C1: Vulnerability-relevant
commit

C2: Vulnerab. irrelevant
commit

Message Add NULL check to avoid
null pointer access.

Check err when partial ==
NULL is meaningless because
partial == NULL means get-
ting branch successfully with-
out error.

Patch

4 addition lines , 2 deletion lines
-sap ctx− >csa reason = reason;
+if (sap ctx)
+sap ctx− >csa reason = reason;
-hdd ap ctx− >...
+if (hdd ap ctx − > sap context)
+hdd ap ctx− >...

3 addition lines, 2 deletion lines
-if (err)
-goto cleanup;
+if (err)
+mutex unlock(ei− >...
+goto cleanup;

at the source code level. The second is an automatic frame-
work for collecting vulnerable code samples from open-source
repositories (i.e., GitHub in this work) to provide additional
training data for learning the vulnerability detection model.

A. Software Vulnerability Detection

Our vulnerability detection model builds on a new GNN
proposed in this work. The model takes as input source code
of the target function. Next, it constructs a program graph
by combining information extracted from the abstract syntax
tree (AST), and the program control and dependence graph
(PCDG). The program structures are presented as directed
graphs, where statements, identifiers, and immediate values
are graph nodes, and a direct relationship (e.g., parent-child,
data or control flow, etc.) between two nodes is recorded
as an edge. As there may exist multiple relationships (or
edges) among a pair of nodes, we use a relation graph to
record each type of relationships (see Sec.IV-C2). The node
connectivity of a relation graph is encoded as a program
graph matrix. Our GNN takes in the program matrices and
initial node representations to learn code representations called
embeddings that are represented as a vector of numerical
values. The code embeddings are passed to a downstream
neural network to make a prediction.

The detection model is trained offline using training datasets
from both standard software vulnerability databases like CVE
and SARD, and examples gathered from open-source reposito-
ries. The trained model can then applies to any “new, unseen”
programs. Unlike prior work [4, 5, 3, 16, 6, 15], our multi-
relational GNN can better capture multiple code relationships,
leading to significantly more accurate detection results. We
describe the vulnerability detection model in Sec. IV.

B. Training Data Collection

To gather vulnerable code samples from open-source repos-
itories like GitHub, we develop an automatic data collection
framework. This framework aims to provide real-world vul-
nerable code samples, complementary to those available from
standard vulnerable databases like the common vulnerabilities
and exposures (CVE) and the software assurance reference
dataset (SARD). Our framework uses a set of predictive
models or experts, each independently predicts whether a code
commit provides a patch for a code vulnerability in the previ-
ous version of a software project. By identifying vulnerability-
relevant code commits, we can examine the changes brought

4

Vulnerability

detection model

f

Code

Snippets
Augmented AST

Prediction

Matrices

Fig. 3. Code vulnerability detection. Our detection model takes as input an
AST and CDFG of the target code snippet at the function level.

by the patch to locate which code segments of the previous
version are likely to lead to a vulnerability. The identified
code segment (a function or method in this work) is then
used as a vulnerable code3 training example. This automatic
data collection framework enables us to build a large training
dataset of real-life programs.

Consider the two commits in Table I from a customized
Linux kernel hosted on GitHub. The first commit (C1) fixes a
NULL pointer vulnerability and the second commit (C2) fixes
a performance issue but not vulnerability. For the detecting
vulnerable code, code extracted from the second commit
should be excluded from the vulnerable training samples.
However, existing approaches (VCCFINDER [18] and ZHOU
et al. [23]) may incorrectly label the second revision in Table I
as vulnerability-relevant commit because the commit message
contains keywords “check” and “NULL”. To avoid such mis-
takes, we apply Conformal Prediction (CP) to quantify the
confidence (or credential) of each expert model’s prediction (or
recommendation) for a commit and only consider predictions
when we trust the model’s outcome. The use of CP helps us
to improve the quality of the collected data. We describe this
training data collection framework in Sec. V.
Roadmap. In the following two sections, we first describe our
GGNN-based code vulnerability detection model in Sec. IV
and then present our training data collection model in Sec. V.

IV. DETECTING CODE VULNERABILITIES

In this section, we describe our GGNN-based code vulner-
ability detection model. We start by giving an overview of
our model in Sec. IV-A. We then move to explain the model
structure in Sec. IV-B before describing how we organize the
program structures as a graph input to the model in Sec. IV-C.
This is followed by a detailed description of the training and
learning process of our model in Sec. IV-D, Sec. IV-E and
Sec. IV-F. Finally, we discuss the model interpretability issue
in Sec. IV-G.

A. Overview of Our Detection Model

Figure 3 depicts the workflow of our detection model, which
takes as input the source code of the target program (i.e., a
function). We construct an AST of the code using a standard
compiler parser. We extend the AST with additional control
and data flows and sequential information like the token se-
quence. The extended AST are presented as directed multiple

3In this work, a vulnerability-relevant code commit = a code revision log
that provides a fix for a vulnerability, while vulnerable code = a piece of
code that contains a type of vulnerability defined in the CWE. We stress
that identifying vulnerability-relevant code commits is fundamentally different
from identifying vulnerabilities from source code as we can utilize additional
information like commit messages and code changes between two commits
to assist with the former task.

1 a = (char*)malloc(b+1);
2 ...
3 else if(!strcmp(c,"dateadded")) {
4 d->d0 = atoi(a);
5 free(a);
6 } else {
7 free(a);
8 }

(a) Code in Figure I after source code rewriting (variable renaming)

DECL PRED STMT STMT CALL

a CALL

malloc ARG

char * +

1b

NOT

CALL

ARG

cdate...

GuardedBy

strcmp

=

d->d0 CALL

ARG

a

atoi

CALL

free ARG

a

free ARG

a

Contrl flowChild

ELSEELIF

NextToken ComputeFromLastUse

GuardedByNegation
JUMP

DECL PRED STMT STMT CALL

a CALL

malloc ARG

char * +

1b

NOT

CALL

ARG

c

d0strcmp

=

d->d0 CALL

ARG

a

atoi

CALL

free ARG

a

free ARG

a

Data flow

AST

PDG

CFG+PDG

ELSEELIF

AST+CFG

(b) Augmented AST

Fig. 4. Normalized code (a) and the extended AST (b).

graphs, where statements, code blocks or values are graph
nodes, and a direct relationship (e.g., parent-child and other
relationships between two nodes) is recorded as an edge. As
there may exist multiple relationships among a pair of nodes,
we use a relation graph to record each type of relationships
(nine relationships in total). The node connectivity of a relation
graph is encoded as an adjacency matrix.

B. GNN Model Structure

Building upon our recent work [26], we extend the gated
graph neural network (GGNN) [27] to model multiple code
relationships extracted from the source code. Our GGNN
consists of four stacked embedding models based on the
Gated Recurrent Unit (GRU) [28], so that it can incorporate
higher degree neighborhoods across relation graphs. It takes
in the adjacency matrices of relation graphs and initial node
representations to learn a global embedding vector, which is
then passed to a standard fully-connected network to make a
classification using a softmax layer.

C. Graph Representations

1) Code preprocessing: As a preprocessing step, we use a
compiler parser to rewrite the variable names using a consis-
tent naming scheme. This step ensures that trivial semantic
differences in programs such as the choice of variable names
do not affect the choice of token embeddings (Sec. IV-D).
Figures 4(a) shows the source rewriting applied to the example
shown in Figure 1.

2) Program graph: Our program graph is constructed from
the AST that contains syntax nodes (i.e., nonterminals in the
language grammar, e.g., an AST node for an if statement
or function declaration) and syntax tokens (terminals like
identifier names and constant values). A standard AST has
just only the child edge for encoding the parent-child
relationships between two AST nodes. To capture additional
syntax, data and control information, we add eight additional
types of edges to the AST, following the methods described
in [29]. We describe our additional edges as follows.
Data and control flows. We integrate the data and control
paths extracted from the PCDG to the AST.

5

GuardedBy. We connect each AST token of a variable to the
variable’s enclosing guard expressions using a GuardedBy
edge. For example, for the if statement in Figure 4(a), we
add a GuardedBy edge from d and free(a) to the AST
node corresponding to !strcmp(). This could be useful for
determining the wrong order of operands [16].
Jump. We use a Jump edge to connect variables with control
dependencies. The GuardedBy and Jump edges allow us
to record the relationship of diverging control flows. Such
a relationship is important for capturing control and data
flow patterns for vulnerabilities like the “double-free” example
given in Figure 1 and “CWE-413: improper resource locking”.
ComputedFrom. For each assignment, v = expr, we connect
v to all variable tokens occurring in expression, expr, using
ComputedFrom edges. This edge captures where a variable
or buffer is used and is useful for detecting vulnerabilities like
“NULL pointer dereference”.
NextToken. As the standard AST child-parent edge does
not induce an order on children of a syntax node, we add
NextToken edges to connect each syntax token to its succes-
sor. This is used to capture the order of opcode and operands
for statements. Such information is useful for vulnerability
types like“CWE-404: improper resource shutdown or release”
because it captures the order of API uses and releases.
LastUse and LastLexicalUse. We connect all uses of the
same variable using LastUse edges to capture the use of
variables, where a special case is variables in if statement and
we connect such type of variables using LastLexicalUse
edges. For instance, for the if statement in Figure 4(a), we
would link the occurrences of c in the loop head and where it
is used. By recording when a variable or buffer is last used, this
relationship helps in identifying vulnerabilities like “double-
free”. Figure 4(b) shows the augmented AST after processing
the code given in Figure 4(a).

3) Relation graphs: We store the relationships of the aug-
mented AST in separate relation graphs - one graph for each of
the nine relationships described above. In this work, a relation
graph is a directed graph, G =< V, E >, that contains the
AST nodes, V , and edges E , that indicate the existence of a
given relationship between two nodes. We use an adjacency
matrix to record the edge connections of each relation graph.
For each edge, we also add a respective backward edge
(by transposing the adjacency matrix), doubling the number
of edges and edge types. These backward edges help with
propagating information across relation graphs.

D. Graph Node Representations
We map every program graph’s nodes (e.g., Stmt) and

tokens to an embedding vector of numerical values using a
word2vector network [30]. The idea is to construct a vector
space such that words found in similar contexts in the source
code are put in close proximity to one another in the vector
space. The embedding table and word2vector for mapping
words and tokens to values are constructed from the training
code corpus consists of node types, and tokens gathered
from training programs. As variable and function names and
constant values can be of arbitrary lengths, we encode them
as tokens (i.e., letters, symbols, and numbers).

Σ

Relation Graph 2

Relation Graph n

(b) Relation graph aggregation

node embeddings graph node

Relation Graph 1

GRU

Target node

Neighbor 1
Neighbor 2

(a) Neighborhood aggregation

Target node: =‘ ((),

)GRU

(i+1)th iteration

Highway
gate

gate recurrent unit (GRU)

Fig. 5. Learning node embeddings by aggregating information across neigh-
bors (a) and from other relation graphs of the same node (b). The initial node
embeddings are generated using a word2vec network.

To capture the type information, we concatenate the embed-
dings of the (return) type of a variable, constant and function –
such as int for an integer variable – with the AST node name
representation, and pass it through a linear layer to obtain the
initial representations for each node in the graph.

E. Learning over Multi-relational Graphs
Given the adjacency matrices and initial node embeddings,

our multi-relational GNN generates a global one-dimensional
embedding of 100 features across relation graphs.

1) Neighborhood aggregation: Like all GNNs, we use a
neighborhood aggregation scheme (Figure 5a) to update node
embeddings. Our 100-dimensional embedding vector, hv , of a
graph node, v, is computed by the embedding layer through
recursively aggregating and transforming the representation
vectors of its neighboring nodes. Nodes exchange information
by sending their current state (i.e., the embedding vector) as a
message to all neighbours along the edges. At each node, mes-
sages are aggregated and then used to update the associated
node representation at the next embedding layer (i.e., the next
iteration). After repeating this process of updating node states
for a fixed number of iterations a readout function is used to
aggregate the node states to a single embedding vector.

2) Multi-relation modeling: Unlike a standard GNN, our
model propagates and aggregates information across multiple
relation graphs. As depicted in Figure 5b, we achieve this
by first using learnable, relation-specific functions to compute
new graph states of individual relation graphs through neigh-
borhood aggregation. We then apply a GRU cell to aggregate
and update states for the same nodes across relation graphs.
Formally, we use forward propagation to update the state, htv ,
for vertex, v, of a relation graph to obtain a new state, ht+1

v :

ht+1
v := GRU(ht

v,
∑
`

∑
(u,v)∈A`

(W` ∗ ht
u)) (1)

where A` are the directed edges between nodes u and v.
W` and the GRU are learnable parameters. The initial node
state, h0v , is created using word2vec as described in Sec. IV-D.

Inspired by work in natural language processing [31] that
uses highway gates [32] to control the noise propagation, we
also employ layer-wise highway gates to our GGNN:

T (h(t)
v) = σ(h(t)

v W
(t)
T + b

(t)
T) (2)

h′(t+1)
v = T (h(t)

v) • h(t+1)
v + (1− T (h(t)

v)) ∗ h(t)
v (3)

where h
(t)
v is the input to layer t+1 and obtain a new

state, h′(t+1)
v ;sigma is a sigmoid function; • is element-wise

multiplication; W (t)
T and b

(t)
T are the weight matrix and bias

vector for gate T (h(t)v), respectively.

6

3) Readout: After we performed the neighborhood aggre-
gation procedure across multiple embedding layers, we will
obtain another set of embeddings for each token. To represent
the entire program, we use a readout function to concatenate
graph representations across all the neighborhood aggregation
iterations and embedding layers, to form an output vector, hG,
as the global program representation of m relation graphs, Gi:

hG = CONCAT

(
m∑
i=1

({
h
(t)
v,i|v ∈ Gi

})
|t = 0, 1, . . . , n

)
(4)

where t = 0, 1, ..., n, is the neighborhood aggregation itera-
tions. Given individual node embeddings, this readout function
produces the global embedding for m relation graphs.

F. Training the GNN

Our GGNN is trained offline using training samples from
both standard vulnerability databases (CVE and NVD in this
work) and open-source code examples gathered using our data
collection framework described in Sec. V. The learned model
can then be applied to unseen programs.

We train our GGNN on batched training samples, where
each batch consists of positive and negative samples. As our
goal is to minimize the distance between two probability dis-
tributions - predicted and actual, we choose the cross-entropy
loss as our objective function. This function is proven to be a
good fit for the sigmoid and softmax activation functions used
by our GNN [33]. We use the minibatch stochastic gradient
descent (SGD) and Adam algorithm [34] with a learning rate
of 0.001. Training terminates when the loss is less than 0.005
or reaching the maximum 100 training epochs. As we will
show in Sec. VII-F4, the training overhead of our vulnerability
detection model is comparable to other DNN schemes. Since
training is performed offline, it is a one-off cost and has no
impact on the end-user.

G. Intuitions of FUNDED

Like most machine learning techniques, DNNs work as a
black box [35], and that is just as true for our approach.
Model interpretation and theoretical analysis of the working
mechanism of a DNN remains an outstanding challenge and is
out of the scope of this work. Xu et al. [36] shows that GNNs
are the same powerful as the Weisfeiler-lehman test [37] in
distinguishing graph structures. At a high level - as depicted
in Figure 4(b) - GNNs follow a neighborhood aggregation
strategy, including the aggregate layer and combine layer,
which are used to iteratively update the representation of a
node by aggregating representations of its neighbors. For the
code example shown in Figure 1, FUNDED learns allocation
and deallocation of variable a by aggregating its neighbor
AST nodes malloc and free. The learnt information will
be mapped into a numerical vector during the readout stage
to allow FUNDED to learn operations performed on variable
a across the program control and data flow graph.

V. TRAINING DATA COLLECTION

To provide large and high-quality training data for our GNN
model, we leverage the available data in open-source projects
by building a data collection tool.

RFP<_>

SVM KNN RFLR GB

SVMC
LRP

LRC KNNP KNNC
GBP GBC

RFC

VotingP VotingC

Commit

SVMP

Fig. 6. Our data labeling model consists of multiple individual classifiers. For
a prediction, P , given by a composition classifier, we quantify its confidence,
C, which is used to filter out predictions of low confidence.

At the heart of our data collection tool is a set of expert
models for predicting if a code revision is vulnerability-
relevant. In essence, we form an “expert committee” comprised
several representative classifiers (Sec. V-A). Each expert model
takes as input a set of features (Table II) obtained from the
commit message and code changes between commits (refer to
Table I). It then predicts if the target code revision provides a
patch for a vulnerability or not. All expert models are trained
offline using labeled training samples. The trained models can
then be applied to any new, unseen code commits from the
unseen projects (Sec. V-D). In Sec. VII-E1, we compare our
“mixture-of-experts” approach against alternative modeling
techniques that use a single monolithic model.

A. Mixture-of-expert Model

Figure 6 depicts our model mixture, which consists of five
classifiers: support vector machine (SVM), random forests
(RF), k-nearest neighbor (KNN), logistic regression (LR) and
gradient boosting (GB). We use these models because they
have been shown to be useful in prior work [20, 23, 19, 24],
but other models can be added into our expert committee too.

Unlike prior work [18] [19] [20] that directly makes use of
the predictions, we first apply CP to evaluate the credential of
individual classifiers for the given input to filter out predictions
with high uncertainty. We then use a majority voting scheme
to aggregate the remaining predictions to generate an outcome.

We describe how to build and use an expert model following
the three-step process of supervised learning: (1) training data
generation; (2) modeling training; (3) using the model.

B. Training Data for Expert Models

1) Collecting code revision training samples: We use the
same training dataset to train each expert model. The training
data are constructed from two sources. The first contains
commit logs and patches reported in CVE [38] and the na-
tional vulnerability database (NVD) [39]. The second contains
commit logs and patches extracted from open-source projects
hosted on GitHub such as the examples given in Table I.

Logs from CVE and NVD are already associated with a
known vulnerability, they can be used directly. To collect data
from GitHub, we consider 1,000 top-ranked projects with the
primary programming language in C or Java. We choose C and
Java as they are among the most popular programming lan-
guages. However, our data collection framework is generally
applicable and can be applied to other programming languages
too. We apply a set of regular expression (RE) rules extended
from [23] to choose commits that are likely to be vulnerability
relevant.

To simplify the process for extracting vulnerability code
samples, our current implementation only considers code

7

TABLE II
FEATURES FOR LABELING VULNERABILITY-RELATED COMMITS.

Category Features

Project quality and activities (1) #stars; (2) #commits; (3) # releases; (4) #con-
tributors; (5) contribution rate; (6) #branches

Code commit description commit message;
Code patch code changes;

revisions that modify one source file at a time. After collecting
the initial code revision samples, we manually inspect the
collected data to identify if the vulnerability reported in the
code commits been published in the CVE or not. If an
identified vulnerability has previously been reported in CVE,
we use the CVE number to establish a link with a public
CVE description. Otherwise, we manually extract the code
segment that contains the vulnerability, the commit logs, and
the issue report (if any). We manually label all code revisions
that have passed our RE rules to be vulnerability-relevant or
not. We then use the labeled samples as our training data. In
this work, we use over 3,000 manually labeled code commits
(from projects with C or Java as the primary language) to
train the expert models (see also Sec. V-C3 and Sec. VI-D).
We stress that this manual inspection process only needs to
be performed once for training the models, and the learned
models can be used to gather many more samples. Therefore,
the training overhead can be amortized.

2) Feature extraction: A key aspect of building a good
machine-learning model is finding the right features to char-
acterize the input. For this work, we use the three types of
features given in Table II to capture the quality of the open-
source project and the purpose of a code commit. Intuitively,
the commit message describes the reason for a code revision -
whether it is relevant to a vulnerability fixing or not, and the
type of the vulnerability. The higher the quality an open-source
project is, the more rigorous and meaningful a code commit
message is likely to be; and an actively developed project is
more likely to have regular patches for vulnerabilities.

The commit message and the modified code statements
are mapped into an embeddings vector, using a pre-trained
word2vec network [40]. The generated embeddings together
with the feature values for the project quality and activities
are put together to form an aggregated feature vector.

C. Expert Model Training

1) Training individual expert models: The training data are
used to determine the optimal hyper-parameters of each expert
model. Each of the training samples consists of a feature vector
of numerical values and a label indicating if the code revision
sample is for fixing a code vulnerability or not. For training,
we simply supply the expert models with the training data and
it carries out its internal supervised learning algorithm.

2) Confidence evaluation: We also apply CP to capture the
“strangeness” (termed nonconformity measure) of class label
y (i.e., vulnerability-relevant or not) for input x. To do so,
we use a model-specific nonconformity function, A(x, y, h),
to estimate the nonconformity score for model h. We use the
default method-specific nonconformity function given in PyCP
[41]. Intuitively, unusual patterns on the feature space defined

Expert
committee<_><_>

code revisions

RE

feature vectors

logs/

patches

Fig. 7. Collecting and labeling open-source code samples.

by an expert model will be given a larger nonconformity score
than more common patterns.

To calculate the statistical confidence, we set aside 10% of
the model training data as the calibration set (that is not used
to train the expert models). We compute, offline, the calibration
scores, ay

p

1 , a
yp

2 , ..., a
yp

n , by applying function A to each of the
n instances in the calibration set using the probability (yp)
given by model h for each class label, y. Given a new input,
xn+1, we calculate the conformity score, ay

p

n+1, using function
A. We then compute a p-value, pv, for xn+1 as:

pv =
COUNT

{
i ∈ {1, ..., n+ 1} : yi = yp and αyp

i ≥ α
yp

n+1

}
COUNT {i ∈ {1, ..., n+ 1} : yi = yp}

(5)
Here, if the p-value is small (close to its lower bound 1/(n+

1)), then the prediction is very nonconforming (an outlier). If
it is large (close to its upper bound 1), then the prediction is
very conforming. We will only consider a prediction if its p-
value is greater than 1−c, where c is a configurable significant
level (empirically set to 0.3 in this work).

3) Training overhead: The time for training the expert
models is dominated by training data collection and labeling.
In this work, it takes us less than three days to collect the
GitHub revision samples using an automatic script (largely
limited by the number of requests can be issued by Github
accounts per day), and two paid annotators less than two days
to manually inspect and label the collected code revisions used
for training by cross-referencing the commit message, code
changes and issue reports. The time in training classifiers and
tuning the training data ratio is negligible (less than an hour
using a multi-core server) in comparison. Since training is only
performed once, it is a one-off cost.

D. Using the Expert Models
Once we have learned the expert models, we can use them

to predict if a code commit provides a patch for a vulnerability.
Figure 7 depicts the process of collecting and labeling open-
source code samples. We use GitHub APIs to automatically
crawl and obtain the code commits of top-ranked projects.
We then apply our RE rules (see Sec. V-B1) to choose code
commits that are likely to be vulnerability relevant.
Labeling code commits. For code revisions that passed our
RE filters, we apply the offline trained expert models to predict
if the code revision is relevant to code vulnerability fixing
or not. We use the feature extractor to process the collected
code commit log, patch and project-related information, to
form a feature vector (as described in Sec. V-B2). Given
the feature values, each expert predicts if the code revision
is relevant to vulnerability fixing or not. To reach consensus
among multiple classifiers (experts), we apply CP to estimate
the nonconformity score of each expert’s output. We keep
outputs whose nonconformity scores are greater the confidence
level (see Sec. V-C2). We then make the final consensus based
on a simple majority voting of the remaining outputs.

8

TABLE III
DATASET FOR EVALUATING VULNERABILITY DETECTION.

Source Language #vuln. types #samples #positive samples

C 30 90,954 45,477
Java 14 29,512 14,756SARD & NVD
Php 5 17,578 8789

GitHub C 10 10,400 5,200
Swift 5 2,506 1253

TABLE IV
CODE REVISION HISTORY DATASET.

Source Language # commits #vulnablility related commits

C 5,718 2,573GitHub Java 2,195 1,796
SAP Java 1,787 804
ZVD C/C++ 3,422 1,540

Extracting code samples. For each code commit that passed
our RE filters, we use code changes to locate the previous
version of a patched function. We then extract the code of
this function and associate it with the label (vulnerable or not)
given by the expert committee.
Continuous learning. One of the advantages of using CP to
evaluate an expert’s confidence is that we can use samples with
low credibility to improve an expert model over time. Doing
so allows us to continuously improve expert models over time.
In Sec. VII-G2, we demonstrate how continuous learning can
be utilized to improve our data collection framework.

VI. EXPERIMENTAL SETUP

A. Evaluation Datasets

We evaluate FUNDED on two types of datasets. We evaluate
our vulnerability detection model (Sec. IV) on code samples
written in four source languages: C, Java, Php and Swift. We
test the mixture-of-expert approach (Sec. V), the core of our
data collection tool, on code revision history of projects using
C, C++ and Java as the primary programming languages.
Dataset for vulnerability detection. Table III gives details of
this dataset, which contains a total of 150,950 samples at the
function level with source languages in C, Java, Php and Swift.
Half of our samples are positive (vulnerable) code samples.
We restrict our scope to the top-5 to top-30 most dangerous
software errors defined in CWE 2019 (e.g., “buffer overflow”,
“out-of-bounds read/write”, “NULL pointer dereference”). We
construct this dataset from SARD [42], NVD [39] and open-
source projects hosted on GitHub. Like prior work [5], we use
the patched version provided by SARD and NVD as a negative
(or vulnerable-free) code sample. Similarly, for the vulnerable
samples collected from GitHub, we apply the corresponding
patch commit to obtain the vulnerability-free version. Our test
samples contain realistic code samples with thousands lines of
code. More information and examples can be found from the
supplementary documents. The supplemental document gives
the distribution for each CWE type used in the evaluation and
an example of our test cases.
Code revision history. As can be seen from Table IV, this
dataset includes a total of 6,713 vulnerability-relevant code re-
visions from GitHub, and the SAP [43] and ZVD [44] datasets.
Among the 4,369 vulnerability-relevant commits from GitHub,
2,071 are established via CVE and NVD links; the remaining

2,298 are obtained from the top-1000 most popular projects
on GitHub with C and Java as the primary programming
languages. For the latter, we manually examined and labeled
the commits to establish the ground-truth. Note that the
SAP and ZVD datasets already contain negative samples (i.e,
randomly chosen vulnerability-irrelevant commits collected
from the same project where a vulnerability-relevant code
commit is found). We apply the same methodology to obtain
negative commits from GitHub. Specifically, we retain code
commits that have passed our RE filters but are found out to
be vulnerability-irrelevant through manual inspection. Overall,
we have a total of 13,122 code commit samples, containing
both vulnerability-relevant and irrelevant commits.

B. Competitive Approaches

For vulnerability detection, we compare FUNDED to six
relevant methods: VULDEEPECKER [5], µVULDEEPECKER
[6], LIN et al. [3], VUDDY [4], DEEPBUGS [16], and
DEVIGN [15]; the first three build upon BiLSTM, VUDDY uses
hash functions to discover vulnerable code clone, DEEPBUGS
utilizes a feedforward neural network for bug detection, and
DEVIGN uses a standard GNN [45] operating on graph repre-
sentation with untyped AST edges. All but µVULDEEPECKER
of the competitive schemes make a binary decision to predict
if the code contains a bug or vulnerability or not.

For data collection, we compare FUNDED with five SOTA
data collection methods: VCCFINDER [18], SABETTA et
al. [20],VULPECKER [19], ZVD [24] and ZHOU et al. [23].

C. Implementation
We implement GNN-based vulnerability detection model

using Tensorflow v.1.8 [46] and models for data collection
using the Python scikit-learn package [47]. To construct the
AST, we use Soot [48] for Java, ANTLR [49] for Swift, Php
and Joern [50] for C/C++. We train and test all approaches on
a multi-core server with a 14-core 2.4 GHz Intel Xeon CPU
and an NVIDIA 2080Ti GPU.

D. Evaluation Methodology

Model evaluation. Unless stated otherwise, we use five-fold
cross-validation to evaluate all approaches on their respective
dataset. This standard methodology evaluates the generaliza-
tion ability of a predictive model.
Performance report. We use four higher-is-better metrics:
Accuracy: The ratio of correctly labeled cases to the total
number of test cases.
Precision: The ratio of correctly predicted samples to the
total number of samples that are predicted to have a specific
label. This metric answers questions like “Of all the code
revisions that are labeled to be vulnerability-relevant, how
many are actually correct?”. High Precision indicates a low
false-positive rate.
Recall: The ratio of correctly predicted samples to the total
number of test samples that belong to a class. This metric
answers questions like “Of all the vulnerable test samples,
how many are actually labeled to be vulnerable?”. High recall
suggests a low false-negative rate.

9

CWE-400

CWE-404

CWE-369

CWE-191

CWE-476

CWE-078

CWE-772

CWE-020

CWE-287

CWE-467

CWE-573

CWE-190

CWE-119

CWE-770

CWE-668

CWE-200

CWE-610

CWE-754

CWE-074

CWE-666

CWE-704

CWE-138

CWE-362

CWE-665

CWE-758

CWE-670

CWE-077

CWE-469

CWE-676

CWE-834

Geomean
0.5
0.6
0.7
0.8
0.9

1
Accuracy Precision Recall F1 Score

Fig. 8. FUNDED delivers on average, an accuracy of 92%, for detecting C functions with the top-30 CWE vulnerabilities.

F1 score: The harmonic mean of Precision and Recall, cal-
culated as 2× Recall×Precision

Recall+Precision . It is useful when the test data
have uneven distribution of vulnerability types.

We report the geometric mean of the aforementioned eval-
uation metrics across the cross-validation folds because it is
widely seen as a more reliable performance metric over the
arithmetic mean [51].

VII. EXPERIMENTAL RESULTS

Highlights of our evaluation results are:
• FUNDED delivers, on average, a 92% accuracy, for software

vulnerability detection (Sec. VII-A and Sec. VII-B).
• FUNDED outperforms all competing methods for detecting

(Sec. VII-C) and collecting (Sec. VII-E vulnerable code).
• We provide detailed analysis for the working mechanisms

of FUNDED (Sec. VII-G and Sec. VII-F).

A. Overall Results
In this experiment, we apply FUNDED to detect vulner-

abilities of C functions with the top-30 CWE vulnerability
types, and we evaluate on other languages in Sec. VII-D.
In this experiment, we train our detection model using both
training samples from standard vulnerability databases and
those collected by our data collection tool. Figure 8 reports
evaluation metrics for each vulnerability type. FUNDED suc-
cessfully identifies most of the vulnerable samples with an av-
erage Accuracy and Precision of 92%. High precision reduces
the false-positive rate and is important in practice because
false-positive results waste developers’ time for verification.
FUNDED also has a high Recall and F1 score of 0.94 (up
to 0.99), indicating that it has a low false-negative rate and
rarely misses vulnerabilities. FUNDED gives less than 90%
Accuracy (but still above 80%) on some CWE types like
CWE-400 and CWE-369 due to the word2vec model (used for
initial node embeddings - see Sec. IV-D) is less accurately in
capturing tokens for API misuse. In future, we could enhance
FUNDED with a more powerful language model. Finally, we
note that FUNDED can identify vulnerabilities from real-world,
sophisticated code where other competing methods fail.

B. Evaluation on Large Code Bases
We apply FUNDED to five open-source projects that were

also evaluated in prior studies [5, 18, 52, 53]. Table V
lists the software versions and the number of function-level
vulnerabilities. We exclude code from these projects in training
to ensure the trained model is tested on “unseen” programs.

Figure 9 summarizes the successfully identified individual
vulnerabilities for each project, where bars on the left-hand

TABLE V
EVALUATION DATASET OF FIVE OPEN-SOURCE PROJECTS.

No. Project Versions # vuln.

1 FFmpeg v3.4.1, v3.4.2, v4.0.1, v4.1 12
2 ImageMagick v7.0.6, v7.0.8 14
3 Linux kernel v4.19 , v4.20 , v5.0, v5.4 16
4 OpenSC v1.8.2, v0.19.0 8
5 rdesktop v1.8.2 6

side are the total number of successfully discovered vulnera-
bilities. Here, a dark symbol means a vulnerability is identified
by a model, where a circle means the vulnerability is reported
in NVD or CVE while a square indicates the vulnerability is
not reported in the two databases – also known as “silently-
patched vulnerabilities” [5].

FUNDED outperforms all competing approaches by iden-
tifying 53 out of 56 vulnerabilities, including 11 “silently-
patched” vulnerabilities, with a Recall of 0.95. By operating
on a graph representation, DEVIGN outperforms the sequence
models with higher overall accuracy, showing the advantage
of a GNN-based model. However, DEVIGN also fails to detect
12 vulnerabilities that a sequence model succeeds because it
sacrifices many of the syntactic and semantic relationships
when trading sequential for an untyped graph representation.
FUNDED improves over DEVIGN by identifying 13 more
vulnerabilities, giving 33% improvement in Accuracy and
Recall. Moreover, FUNDED identifies four vulnerabilities that
all other models fail to detect. There is one each case in
FFmpeg, ImageMagick and Linux kernel that FUNDED fails to
detect but can be identified by others. Those are cases where
the vulnerability is caused by the misuse of API parameters.
Such patterns are not captured by word2vec model used by
FUNDED. This issue can be tackled by using a better language
embedding model, for which we leave as future work.

C. Vulnerability Detection on Individual Datasets
We now evaluate our vulnerability detection model on the

individual datasets in Table III using cross-validation.
1) Evaluation on standard datasets : This experiment ap-

plies all approaches to C functions from SARD and NVD. In
Sec. VII-D, we extend the evaluation to Java, Php and Swift.

Figures 16 and 10 show that FUNDED delivers the best
overall performance for vulnerability detection. VUDDY and
DEEPBUGS give low detection accuracy due to the limitations
of their detection models. Using BiLSTM, VULDEEPECKER
and µVULDEEPECKER are effective in a small number of
vulnerability types but gives an accuracy of less than 50%
for certain types (like CWE-469, CWE-676, and CWE-834)
and can lead to a large number of false positives (i.e., low
precision). By leveraging a rich set of manually labeled

10

FFmpeg ImageMagick Linux kernel OpenSC rdesktop

40

5

21

34

26

25

VUDDY

μVULDEEPECKER

Lin et al.
DEEPBUGS
DEVIGN

VULDEEPECKER

53FUNDED

Fig. 9. The number of vulnerabilities identified by each approach for each open-source project. A solid symbol represents a successfully detected vulnerability,
where a circle means the vulnerability is reported in NVD or CVE, while a square means the vulnerability is not reported in the standard databases. FUNDED
successfully detects more vulnerabilities than others.

Accuracy Precision Recall F1 Score0
0.2
0.4
0.6
0.8

1
DEEPBUGS VUDDY VULDEEPECKER μVULDEEPECKER DEVIGN LIN et al. FUNDED

Fig. 10. Evaluation on standard vulnerability databases. Min-max bars show
performance across vulnerability types.

Accuracy Precision Recall F1 Score0
0.2
0.4
0.6
0.8

1
VUDDY RGCN μVULDEEPECKER VULDEEPECKER DEEPBUGS LIN et al. DEVIGN FUNDED

Fig. 11. Evaluation on GitHub samples. FUNDED gives the best Accuracy,
Recall and F1 score.

training data, LIN et al. is the best-performing competing
method. However, its BiLSTM-based model fails to detect
some vulnerable cases. For test cases with a CWE-834 vulner-
ability, LIN et al. only successfully discovers 52.6% of the
vulnerable samples. DEVIGN gives the second-highest overall
accuracy, but that only translates to a marginal improvement
of less than 2% over µVULDEEPECKER and is outperformed
by LIN et al. DEVIGN also gives low performance several
vulnerability types like CWE-138 and CWE-754, while other
models have an accuracy of over 80%.

For the majority of the vulnerability types, FUNDED out-
performs all other methods across all evaluation metrics. In
a handful of types of vulnerabilities, FUNDED misses one
vulnerable sample that can be detected by the best-performing
alternative method. Most of such cases are because our the
pre-trained word2vec network does not capture a certain
language keyword, e.g., sizeof. This can be improved by
explicitly adding important keywords to the network vocab-
ulary so that word2vec can directly model the semantics of
those keywords at the word (instead of token) level [54].
Overall, FUNDED is the only scheme that delivers averaged
accuracy of over 90% and has the best overall performance
across evaluation metrics.

2) Evaluation on GitHub dataset: We now extend our
experiments to C functions collected from GitHub. In this ex-
periment, we train on the SARD-NVD datasets and test on the
GitHub dataset. Figure 11 reports results across metrics, where
the min-max bar shows the variance across vulnerability types.
As expected, training data from the standard databases cannot
fully represent the vulnerable code samples seen in real-life
programs. As a result, we see a drop in accuracy for GitHub
code samples. Overall, FUNDED delivers the best performance
for Accuracy, Recall, and F1 score. While VUDDY has the best
Precision, it has a much lower Recall. This is because although
VUDDY has the lowest false-positive rate, it is too restricted in
detecting vulnerabilities – it misses over 85% of the vulnerable

Accuracy Precision Recall F1 Score0
0.2
0.4
0.6
0.8

1
VUDDY μVULDEEPECKER VULDEEPECKER LIN et al. DEEPBUGS DEVIGN FUNDED

(a) C to Java

Accuracy Precision Recall F1 Score0
0.2
0.4
0.6
0.8

1
μVULDEEPECKER VULDEEPECKER LIN et al. VUDDY DEEPBUGS DEVIGN FUNDED

(b) Java to Php

Accuracy Precision Recall F1 Score0
0.2
0.4
0.6
0.8

1
VUDDY LIN et al. VULDEEPECKER μVULDEEPECKER DEEPBUGS DEVIGN FUNDED

(c) C to Swift
Fig. 12. Apply transfer learning to port a detection model for a new
programming language.

testing samples. LIN et al. is the best-performing alternative
model for Accuracy, but its F1 score is 20% lower than that of
FUNDED, suggesting that FUNDED achieves a better balance
for false and negative positives.

D. Cross-languages Learning
Prior work in other domains has shown that neural networks

trained on similar inputs for different tasks often share useful
commonalities [55]. The observation is that the properties
of the input that are abstracted by the beginning layers of
the neural networks are mostly independent of the task. By
contrast, information learnt at the last few layers in networks
is more specialized towards a specific task. Our work exploits
this observation to reuse these parts of the network learned
from one language to speed up the learning for a new language.
Furthermore, by modeling the program graph structure rather
than the surface level information at the code level, our
approach can better capture the vulnerable code structure
across programming languages too. This suggests that we
can port a detection model for a new programming language
by leveraging the knowledge of the vulnerable code patterns
learned from another language. The technology for achieving
this is called transfer learning [56, 57]. Since we use the same
network structure, transfer learning is achieved by copying the
weights of a model built for one language to initialize the
network for another. Then, we train the model as usual using
a small set of training samples for the target language.

11

1 ...
2 if (inputStream != null) {
3 inputStream.close();
4 }
5 if (fileOutputStream != null) {
6 return false;
7 }
8 fileOutputStream.close();
9 return false;

10 ...

(a) Java code sample from GitHub with CWE-775
1 ...
2 if ($userfile != FALSE){
3 while (($user = fgetcsv($userfile)) !=

FALSE)
4 if ($user[0] == $username)
5 return TRUE;
6 return FALSE;
7 }
8
9 fclose($userfile);

10 ...

(b) Php code sample from Github with CWE-775
Fig. 13. Both the C code (a) and Php code (b) contain an “improper resource
shutdown” vulnerability. Although the programs were written in two different
languages and are from two different open-source repositories, they have
similar control and data flows that lead to a common vulnerability.

To illustrate how graph-level knowledge can be reused
across programming languages for code vulnerability detec-
tion, consider the two code segments in Table 13 from two
different repositories hosted on GitHub. Both code samples
contain an improper resource shutdown vulnerability where
the program does not release a file handler after its effective
life-cycle ends. Specifically, the Java function in Figure 13
does not close the file handler if fileOutputStream is
not null, and the Php method does not close the file handler
if userfile is True. By modeling the subtle program
structures that lead to a vulnerability, our approach can reuse
the knowledge learnt from the Java training samples to model
the same vulnerability for Php programs or vice versa.

In this experiment, we first train a baseline model for
one language. We then apply transfer learning to port the
baseline model to another language using cross-validation. We
consider three cross-language settings: C to Java, Java to Php
and C to Swift, where the first is the language the baseline
model is trained for, and the second is the new language
to be targeted. Figure 12 shows that FUNDED can better
utilize prior knowledge to detect software vulnerabilities for
a new programming language, by delivering the best perfor-
mance across language settings and evaluation metrics. This
is because FUNDED captures much of the language-agnostic
information for vulnerable code patterns. This feature is useful
for languages or libraries with scarce training samples.

E. Evaluation of Data Collection

We now evaluate our data collection framework on the code
revision datasets given in Table IV using cross-validation.

1) Compare to alternative data labeling approaches: Fig-
ure 14 shows the ROC curves for different data collection
methods and individual expert models (Sec. V-A) used in this
work. The ROC diagram plots the true-positive rate (TPR)

0 0.2 0.4 0.6 0.8 1
FPR

0

0.2

0.4

0.6

0.8

1

TP
R

better

FUNDED
SABETTA et al.
ZHOU et al.
VCCFINDER
ZvD
VULPECKER

(a) Comp. to data collect. methods.

0 0.2 0.4 0.6 0.8 1
FPR

0

0.2

0.4

0.6

0.8

1

TP
R

better

FUNDED
LR
RF
GB
SVM
KNN

(b) Comp. to individual experts

Fig. 14. ROC curves for true positive rate (TPR) and false positive rate (FPR).
We compare FUNDED to other automatic data collection frameworks (a) and
individual expert models used in our expert committee (b). Methods that give
curves closer to the top-left corner indicate a better performance.

Accuracy Precision Recall F1 Score-10
0

10
20
30

%
 o

f i
m

pr
ov

em
en

t ZHOU et al. ZvD SABETTA et al. FUNDED

(a) Improvement over the baseline VULDEEPECKER model.

Accuracy Precision Recall F1 Score-10
0

10
20
30

%
 o

f i
m

pr
ov

em
en

t ZHOU et al. ZvD SABETTA et al. FUNDED

(b) Improvement over the baseline µVULDEEPECKER model.

Fig. 15. Performance improvement over the baseline code detection models
when using extra labeled training samples from GitHub. The min-max bar
shows the range of improvement across the top-10 CWE vulnerability types.

against the false-positive rate (FPR) at different classification
thresholds, where a positive sample refers to a vulnerability-
relevant commit. Lowering the classification threshold (i.e., a
higher FPR) increases the likelihood for labeling more samples
as vulnerability-relevant, thus increasing both true and false
positives. FUNDED delivers the best overall performance under
a meaningful FPR threshold (e.g, less then 0.5), by giving a
curve closer to the top-left corner than other methods.

2) Impact of collected training data: In this experiment,
we evaluate if the open-source project samples help in learn-
ing a better detection model. To isolate the impact of our
GNN model, we test if the training samples gathered by a
data collection method can improve the baseline model of
VULDEEPECKER [5] and µVULDEEPECKER [6]. We use the
SARD-based training datasets [42] to learn the baseline model.
Next, we include additional 400 GitHub code samples (with
an equal positive-negative split) that are collected by FUNDED
and other methods [23, 20, 24] to the training dataset to learn
a second, refined model. We then apply both the baseline and
the refined models to 1,000 C test samples from Github, where
half of the samples are vulnerable code. For a fair comparison,
we ensure that the test data only contain the same CWE types
seen in the training data of the baseline model.

Figure 15 reports the performance improvement by using a
data collection approach. The min-max bar shows the range
of improvement across different vulnerability types, where
a negative value suggests a decrease in performance. Using
extra training data from GitHub could improve the baseline
models. FUNDED delivers the best and consistent improvement
across all evaluation metrics, outperforming the competitive

12

CWE-40
0

CWE-40
4

CWE-36
9

CWE-19
1

CWE-47
6

CWE-07
8

CWE-77
2

CWE-02
0

CWE-28
7

CWE-46
7

CWE-57
3

CWE-19
0

CWE-11
9

CWE-77
0

CWE-66
8

CWE-20
0

CWE-61
0

CWE-75
4

CWE-07
4

CWE-66
6

CWE-70
4

CWE-13
8

CWE-36
2

CWE-66
5

CWE-75
8

CWE-67
0

CWE-07
7

CWE-46
9

CWE-67
6

CWE-83
4

40%
50%
60%
70%
80%
90%

100%

Ac
cu

ra
cy

DEEPBUGS VUDDY VULDEEPECKER μVULDEEPECKER DEVIGN LIN et al. FUNDED

Geo
mea

n

Fig. 16. Detection accuracy for the top-30 CWE vulnerability types on standard vulnerability databases.

TABLE VI
TOP-3 ACCURACY FOR PREDICTING THE VULNERABILITY TYPE.

Method Accuracy Method Accuracy

µVULDEEPECKER 78.1% DEVIGN 81.4%
RGCN 79.0% FUNDED 93.8%

Accuracy Precision Recall F1 Score
0.6
0.7
0.8
0.9

1
F-vanilla-AST F-AST F-CDFG F-CONCAT F-MLP FUNDED

Fig. 17. Comparing implementation variants of FUNDED. Our implementation
gives the best overall performance.

methods with at least 4.6% (up to 10.2%) improvement with
higher quality training data. For the 200 GitHub samples to be
labeled as vulnerability-relevant, the mixture-of-expert model
of FUNDED has an accuracy over 90%, while others have a
lower accuracy between 60.1% and 81.6%. The incorrectly
labeled examples given by some competing models could also
have a negative impact on the resulting performance. This
experiment shows the need of having an accurate data labeling
model to collect additional, high-quality training examples.
FUNDED offers exactly such capabilities.

F. Analysis of Vulnerability Detection Model

1) Predict the vulnerability type: So far, we have applied
FUNDED to make a binary decision to predict if a piece of
code contains a vulnerability or not. In this experiment, we
extend FUNDED to predict the types of vulnerabilities. We
compare FUNDED to µVULDEEPECKER, the only multi-class
vulnerability detection model in the competitive schemes, but
we also extend two GNN-based variants: RGCN [58] and
DEVIGN to multi-class predictions. We use the C datasets from
SARD, NVD and GitHub (see Table III) for evaluation.

Table VI reports the top-3 accuracy of four methods. This
metric checks if one of the top-3 predicted labels (ranked
based on prediction probabilities) matches the ground-truth of
a testing sample. This in practice means the developer only
needs to verify three potential vulnerabilities. As expected, we
see a drop in accuracy from binary prediction to the multi-class
prediction. However, FUNDED remains the best-performing
model and is the only one that gives an accuracy of over 90%.

2) Impact of implementation choices: We compare
FUNDED to several implementation variants using the SARD
dataset (that isolates the impact of our data collection method).
The first variant, referred to as F-vanilla-AST, operates on
the standard AST (without the additional edges describes in
Sec. IV-C). The second variant, referred to as F-AST, operates
on the augmented AST but does not have the control and data
flow edges. The third variant, referred to as F-CDFG, operates

Pos. Samples Neg. Samples

(a) µVULDEEPECKER

Pos. Samples Neg. Samples

(b) RGCN

Pos. Samples Neg. Samples

(c) DEVIGN

Pos. Samples Neg. Samples

(d) FUNDED
Fig. 18. Program embedding space given by different approaches. FUNDED is
more effective in mapping code samples into a space where a more distinctive
boundary can be drawn to separate vulnerable and benign code samples.

on an augmented AST but with only additional control and
data flow edges. The fourth variant, referred to as F-CONCAT,
learns individual embeddings for each relation graph and then
concatenates them for prediction. The last variant, referred to
as F-MLP, uses a multilayer perceptron (MLP) layer to learn
and aggregate embedding of individual relation graphs [26],
but without attention and highway gates.

Figure 17 reports that using the standard AST is inadequate
for modeling the program structures. By augmenting the AST
with control and data flow information, F-AST or F-CDFG
modestly improves the accuracy of F-vanilla-AST by 5%.
However, using the AST or CDFG alone is insufficient, as
both give an accuracy of less than 85%. F-CONCAT also
gives lower performance compared to FUNDED, suggesting
that simply combining the embeddings of relation graphs is
less effective. This experiment reinforces the importance of
utilizing and aggregating the information of the additional
control and data flow information. By operating on multiple
relation graphs, F-MLP is the best-performing competitive
approach, showing the great advantage of multi-relational
learning. FUNDED further improves F-MLP by employing an
attention mechanism and using highway gates to minimize the
diminishing gradient issue when modeling long dependence.

3) Program embedding space: To illustrate the learned
program representation, we visualize the embedding space of
testing data. Intuitively, an effective classifier should map the
testing inputs into space where distinct decision boundaries
between the positive and negative classes can be drawn.

Figure 18 shows how a trained BiLSTM (that is used
by VULDEEPECKER, µVULDEEPECKER, and LIN et al.),
DEVIGN (a standard GNN), RGCN and FUNDED map more
than 1,000 test samples of C functions from NVD, SARD, and
GitHub (with an equal positive-negative split) onto the embed-
ding space. To aid clarity, we apply t-SNE [59], a visualization

13

0
30
60
90

120

Ti
m

e
(m

in
)

(a) Training overhead
0.4

0.6

0.8

1

Ac
cu

ar
cy

(b) Accuracy

DEEPBUGS VULDEEPECKER μVULDEEPECKER DEVIGN FUNDED

Fig. 19. Training overhead (a) and accuracy (b). The min-max bars show the
variances across evaluation settings.

technique, to project the multi-dimensional embedding space
into a two-dimensional space. Compared with other methods,
FUNDED (Figure 18b) is more effective in mapping the test
samples into space where most of the samples can be separated
by a binary decision boundary. The result shows FUNDED is
more effective in extracting essential program structures for
vulnerability detection.

4) Model training overhead: Figure 19 shows the training
overhead and the achieved accuracy for different vulnerability
detection models. The training time was measured by applying
all approach to the largest training dataset used in this work,
which consists of 101,354 C functions from SARD, NVD, and
Github as described in Table III. Training terminates when the
loss does not improve within 20 consecutive training epochs,
or reaches a 95% accuracy on the valuation set, or meets
the termination criteria given in the published implementation.
This experiment was conducted on a multi-core server using
a desktop level NVIDIA 2080Ti GPU.

All the models can converge within two hours on our
training datasets. DEEPBUGS incurs the least training time
because it uses a simple feedforward neural network. How-
ever, DEEPBUGS delivers the lowest accuracy because the
model is inadequate in capturing complex code structures.
The remaining DNN methods require longer training time
than DEEPBUGS, but they give significantly better detection
accuracy. FUNDED incurs longer training time compared to
other DNN methods because the model learns across multiple
relational graphs. However, the training overhead of FUNDED
is still comparable to other DNN models (within two hours),
but it yields better detection accuracy. We stress that the model
training is performed offline and is a one-off cost. Furthermore,
our approach can make a prediction within seconds, which thus
has a negligible impact on the end-user.

G. Analysis of Data Collection Framework

1) Confidence evaluation: This experiment evaluates how
often our CP function (see Sec. V-C) successfully detects when
a data labeling prediction is wrong. We apply our approach to
the code revision history dataset (Table IV). Our CP scheme
successfully catches 91% of the inputs when an expert model
gives a wrong prediction, and has a low false positive (i.e.,
when the CP model thinks the classifier is wrong but it is not)
rate of 9%. Note that we can also apply CP to improve our
detection model further. We found that an unoptimized CP is
able to catch 80% of the cases when our detection model gives
a wrong prediction for vulnerable code.

2) Continuous learning: In this experiment, we check if
one can use the ground-truth labels for predictions flagged
by the CP to update a classifier. To do so, for predictions

0.1 0.2 0.3 0.4 0.5 0.6
Non-conformity Score

0.5
0.6
0.7
0.8
0.9

1
SAP_Pr SAP_Re SAP_F1 GitHub_Pr GitHub_Re GitHub_F1

Fig. 20. How performance of our data labeling model changes as the non-
conformity threshold increases on the SAP and Github datasets.

with a p-value greater than 0.7 (see Sec. V-C2), we manually
check the code revision to obtain the ground-truth. By using
the ground-truth for only 5% of the mispredicted samples to
update classifiers, our data labeling model can achieve over
90% for F1 score on the testing data. This translates into an
improvement of over 35% for the initial labeling model. Thus,
using CP as a confidence measurement provides a practical
way to gradually improve our data collection framework.

3) Impact of non-conformity threshold: Figure 20 shows
how the nonconformity threshold affects the performance of
our data labeling model on code commits collected from
the GitHub and the SAP datasets. A larger nonconformity
threshold can help in reducing the false-positive rate, leading
to higher Precision, but it can also negatively affect the Recall
and F1 score. In this work, we use 0.3 for the nonconformity
threshold as it gives the best overall performance.

VIII. DISSCUSSION AND FUTURE WORK

FUNDED is among the first attempts in employing GNNs
and CP for code vulnerability detection. Naturally, there is
room for future work and further improvement. We discuss a
few points here
Model robustness. Machine learning models can suffer from
adversarial attacks where carefully constructed data samples
can lead to bias and deviant behavior of a trained model.
However, we believe that FUNDED is less susceptible to
this problem for several reasons. First, we use code samples
collected from large-scale open-source repositories to improve
the coverage and diversity of our training dataset. Injecting
adversarial samples into thousands of top-ranked, actively-
maintained opensource projects without being noticed by the
developers and users is highly unlikely, and even if this is
achievable, it will incur significant efforts. Therefore, the com-
plexity of the attack is high. Secondly, since our data collection
framework uses multiple models, launching an attack to N
models would typically increase the complexity of the attach
by N times because the adversarial examples are often tightly
coupled with the target model [60]. Finally, our CP model can
be useful in filtering out adversarial samples by employing a
threshold-based analysis which was shown to be effective in
defending against adversarial samples [61, 62].
Model capability. The capability of GNNs is limited by the
depth and width of the model [63]. Our work targets at the
function level vulnerability detection, and we found that our
GGNN is sufficient in learning program structures. However,
we envision that to model larger programs will need a larger
and deeper GGNN. To train a larger neural network typically
also requires a larger amount of training data for which our
data collection framework will be useful. It would also be

14

interesting in applying neural architecture search techniques
[64] to find the right neural network structures. We leave this
as our future work.
Language model. In this work, we use word2vec to initialize
the node embeddings by learning from the surface-level syntax
information (Sec. IV-D). The pre-trained word2vec model
was originally designed for natural language processing and
is not tuned for exploiting the well-defined structures of
a programming language. As a result, it could miss some
important language keywords. In this work, we have tried to
circumvent this issue by explicitly adding some important key-
words to the network’s vocabulary. This workaround requires
manual intervention and hence does not scale well to new
programming languages. A better language model designed
for modeling program language structures can alleviate this
issue by eliminating expert involvement. Our future work will
explore a language model that is specifically built for modeling
program source code like code2vec [65].
Model interpretability. Machine learning techniques, in gen-
eral, have the problem of relying on black boxes. Theoretical
analysis for the capability and boundaries of a DNN is
currently an active research field [36, 63, 66]. Providing a
theoretical proof of the underlying working mechanism of
FUNDED is our future work. One way to gain insight into
why the model fails to produce the desired result is to train
an interpretable model (or the so-called surrogate models)
like linear regressor to approximate the predictions of the
underlying black-box model [65].

IX. RELATED WORK

Our work builds upon the past foundations of code vulner-
ability analysis, machine learning and software engineering.
We leverage the recent development in graph neural networks
to model the program graph structures to learn vulnerable
code patterns and use the learned knowledge to detect code
vulnerabilities. Our work also exploits ensemble learning to
collect training samples from real-life open-source projects
to provide additional data for training the code vulnerability
detection model.
Classical approaches. Early work in software vulnerability
detection relies on expert-crafted rules [67] . However, it is not
trivial to construct high-quality rules as this requires heavily
expert involvement. Symbolic execution [68, 69] sidesteps the
need for hand-crafted rules by exploiting symbolic values and
analyzing their use over the control flow graph of a program
on source code, but it does not scale to large programs and
often suffer from high false positives [70].
Deep learning based vulnerability detection. Our work is
part of the recent efforts in DL-based software vulnerability
detection [5, 6, 3, 71]. A comprehensive review of the field can
be found at [7]. Prior work in the area treated source code or
the AST as a sequential string and often ignores the structural
information of the program. Our work exploits and extends
GGNN to better model programs with multiple relationships.
To provide sufficient training data, some of the recent work
develop predictive models to automatically extract vulnerable
code samples from code revision history [43, 20, 24]. In-

spired by these recent efforts, FUNDED combines probabilistic
learning and statistical assessment to automatically extract vul-
nerable code samples from open-source projects, significantly
improving the quality of the extracted samples.
Graph neural networks. GNNs have shown promising results
in processing graph data structures for tasks like mining social
networks [12], entity alignment [13], and binary similarity de-
tection [14]. DEVIGN [15] is most closely related to our work.
Different from DEVIGN, our approach simultaneously models
multiple code relationships accuracy and is more effective for
cross-languages learning. The GNN presented in this paper
extends our recent work on using multi-relational graphs to
model program structures [26]. The new GNN advances [26]
by extending the AST encoding to capture additional code
relationships and type information and using GRU and high-
way gates to model longer-term dependencies, leading to better
performance as shown in Sec. VII-F2.
Machine learning based software development. There is an
increasing interest in applying machine learning techniques
to software development [72]. Existing approaches address a
variety of development tasks, including fuzz testing [73, 74],
detecting code clone [75, 4, 19, 76], improving static analysis
for bug funding [77, 78], repairing programs [79], defect
prediction [80, 81], attack detection [82] and processing bug
reports [18, 23, 24]. FUNDED builds on those past foundations
but is quality different from these studies.

X. CONCLUSION

We have presented FUNDED, a novel graph-learning-based
approach for learning code vulnerability detection models.
FUNDED extends the standard graph neural network to model
multiple code relationships that are essential for modeling
program structures for vulnerability detection. To provide suf-
ficient training data, FUNDED combines probabilistic learning
and statistical assessments to automatically collect vulnera-
ble code samples from open-source repositories. We apply
FUNDED to detect source code vulnerabilities at the function
level on large real-life datasets. Experimental results show that
FUNDED significantly outperforms a wide range of competi-
tive approaches across evaluation metrics.

REFERENCES

[1] N. Sun, J. Zhang, P. Rimba, S. Gao, L. Y. Zhang, and Y. Xi-
ang, “Data-driven cybersecurity incident prediction: A survey,”
Proceedings of the IEEE Communications Surveys & Tutorials,
vol. 21, no. 2, pp. 1744–1772, 2018.

[2] F. Wu, J. Wang, J. Liu, and W. Wang, “Vulnerability detection
with deep learning,” in Proceedings of the 2017 3rd IEEE
International Conference on Computer and Communications
(ICCC). IEEE, 2017, pp. 1298–1302.

[3] G. Lin, J. Zhang, W. Luo, L. Pan, O. De Vel, P. Montague, and
Y. Xiang, “Software vulnerability discovery via learning multi-
domain knowledge bases,” Proceedings of the IEEE Transac-
tions on Dependable and Secure Computing, 2019.

[4] S. Kim, S. Woo, H. Lee, and H. Oh, “Vuddy: A scalable
approach for vulnerable code clone discovery,” in Proceedings
of the 2017 IEEE Symposium on Security and Privacy (SP).
IEEE, 2017, pp. 595–614.

[5] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, and
Y. Zhong, “Vuldeepecker: A deep learning-based system for
vulnerability detection,” Proceedings of the NDSS, 2018.

15

[6] D. Zou, S. Wang, S. Xu, Z. Li, and H. Jin, “µvuldeepecker:
A deep learning-based system for multiclass vulnerability de-
tection,” Proceedings of the IEEE Transactions on Dependable
and Secure Computing, 2019.

[7] G. Lin, S. Wen, Q.-L. Han, J. Zhang, and Y. Xiang, “Software
vulnerability detection using deep neural networks: A survey,”
Proceedings of the IEEE, vol. 108, no. 10, pp. 1825–1848, 2020.

[8] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, and Z. Chen, “Sysevr: A
framework for using deep learning to detect software vulnera-
bilities,” Proceedings of the arXiv preprint arXiv:1807.06756,
2018.

[9] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Proceedings of the Neural computation, vol. 9, no. 8, pp. 1735–
1780, 1997.

[10] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and
M. Wolfe, “Dependence graphs and compiler optimizations,”
in Proceedings of the 8th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, 1981, pp. 207–218.

[11] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” Proceedings
of the IEEE Transactions on Neural Networks and Learning
Systems, 2020.

[12] H. Gao, Z. Wang, and S. Ji, “Large-scale learnable graph
convolutional networks,” in Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery &
Data Mining, 2018, pp. 1416–1424.

[13] Y. Wu, X. Liu, Y. Feng, Z. Wang, and D. Zhao, “Jointly learning
entity and relation representations for entity alignment,” Pro-
ceedings of the arXiv preprint arXiv:1909.09317, 2019.

[14] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, “Neural
network-based graph embedding for cross-platform binary code
similarity detection,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, 2017,
pp. 363–376.

[15] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign: Effective
vulnerability identification by learning comprehensive program
semantics via graph neural networks,” in Proceedings of the
Advances in Neural Information Processing Systems, 2019, pp.
10 197–10 207.

[16] M. Pradel and K. Sen, “Deepbugs: A learning approach to
name-based bug detection,” Proceedings of the ACM on Pro-
gramming Languages, vol. 2, no. OOPSLA, pp. 1–25, 2018.

[17] C. Cummins, P. Petoumenos, A. Murray, and H. Leather,
“Compiler fuzzing through deep learning,” in Proceedings of
the 27th ACM SIGSOFT International Symposium on Software
Testing and Analysis, 2018, pp. 95–105.

[18] H. Perl, S. Dechand, M. Smith, D. Arp, F. Yamaguchi, K. Rieck,
S. Fahl, and Y. Acar, “Vccfinder: Finding potential vulnerabil-
ities in open-source projects to assist code audits,” in Proceed-
ings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, 2015, pp. 426–437.

[19] Z. Li, D. Zou, S. Xu, H. Jin, H. Qi, and J. Hu, “Vulpecker: an
automated vulnerability detection system based on code simi-
larity analysis,” in Proceedings of the 32nd Annual Conference
on Computer Security Applications, 2016, pp. 201–213.

[20] A. Sabetta and M. Bezzi, “A practical approach to the automatic
classification of security-relevant commits,” in Proceedings of
the 2018 IEEE International Conference on Software Mainte-
nance and Evolution (ICSME). IEEE, 2018, pp. 579–582.

[21] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton,
“Adaptive mixtures of local experts,” Proceedings of the Neural
computation, vol. 3, no. 1, pp. 79–87, 1991.

[22] G. Shafer and V. Vovk, “A tutorial on conformal prediction,”
Proceedings of the Journal of Machine Learning Research,
vol. 9, no. Mar, pp. 371–421, 2008.

[23] Y. Zhou and A. Sharma, “Automated identification of security
issues from commit messages and bug reports,” in Proceedings
of the 2017 11th Joint Meeting on Foundations of Software
Engineering, 2017, pp. 914–919.

[24] X. Wang, K. Sun, A. Batcheller, and S. Jajodia, “Detecting” 0-

day” vulnerability: An empirical study of secret security patch
in oss,” in Proceedings of the 2019 49th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks
(DSN). IEEE, 2019, pp. 485–492.

[25] Z. Huang, W. Xu, and K. Yu, “Bidirectional lstm-crf mod-
els for sequence tagging,” Proceedings of the arXiv preprint
arXiv:1508.01991, 2015.

[26] G. Ye, Z. Tang, H. Wang, D. Fang, J. Fang, S. Huang, and
Z. Wang, “Deep program structure modeling through multi-
relational graph-based learning,” in Proceedings of the ACM
International Conference on Parallel Architectures and Compi-
lation Techniques, 2020, pp. 111–123.

[27] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph
sequence neural networks,” in Proceedings of the ICLR, 2015.

[28] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau,
F. Bougares, H. Schwenk, and Y. Bengio, “Learning phrase rep-
resentations using rnn encoder-decoder for statistical machine
translation,” 2014.

[29] M. Allamanis, M. Brockschmidt, and M. Khademi, “Learning
to represent programs with graphs,” in Proceedings of the ICLR,
2018.

[30] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their
compositionality,” in Proceedings of the Advances in neural
information processing systems, 2013, pp. 3111–3119.

[31] A. Rahimi, T. Cohn, and T. Baldwin, “Semi-supervised user
geolocation via graph convolutional networks,” in Proceedings
of the ACL, 2018”.

[32] R. K. Srivastava, K. Greff, and J. Schmidhuber, “Highway
networks,” Proceedings of the arXiv preprint arXiv:1505.00387,
2015.

[33] Z. Zhang and M. Sabuncu, “Generalized cross entropy loss for
training deep neural networks with noisy labels,” in Proceedings
of the Advances in neural information processing systems, 2018,
pp. 8778–8788.

[34] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” Proceedings of the arXiv preprint arXiv:1412.6980,
2014.

[35] F. Pasquale, The black box society. Harvard University Press,
2015.

[36] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are
graph neural networks?” Proceedings of the ICLR, 2018.

[37] B. Weisfeiler and A. A. Lehman, “A reduction of a graph to
a canonical form and an algebra arising during this reduction,”
Proceedings of the Nauchno-Technicheskaya Informatsia, vol. 2,
no. 9, pp. 12–16, 1968.

[38] “Common Vulnerabilities and Exposures (CVE),” https://cve.
mitre.org/.

[39] “National Vulnerability Database (NVD),” https://nvd.nist.gov.
[40] Y. Goldberg and O. Levy, “word2vec explained: deriving

mikolov et al.’s negative-sampling word-embedding method,”
Proceedings of the arXiv preprint arXiv:1402.3722, 2014.

[41] V. N. Balasubramanian, A. Baker, M. Yanez, S. Chakraborty,
and S. Panchanathan, “Pycp: an open-source conformal predic-
tions toolkit,” in Proceedings of the IFIP International Con-
ference on Artificial Intelligence Applications and Innovations.
Springer, 2013, pp. 361–370.

[42] NIST, “Software Assurance Reference Dataset Project,” https:
//samate.nist.gov/SRD/.

[43] “SAP Dataset,” https://github.com/SAP/
vulnerability-assessment-kb/tree/master/MSR2019.

[44] “Zvd Dataset,” https://github.com/SecretPatch/Dataset.
[45] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, in Gated

graph sequence neural networks, 2016.
[46] “TensorFlow.” https://www.tensorflow.org/.
[47] “Scikit-learn: Tools for predictive data analysis,” https://

scikit-learn.org.
[48] “Soot: A framework for analyzing and transforming Java appli-

cations,” http://sable.github.io/soot/.

16

[49] “ANTLR (ANother Tool for Language Recognition) ,” https:
//www.antlr.org/.

[50] “Joern(Open-Source Code Querying Engine for C/C++.),” https:
//joern.io/.

[51] W. Ertel, “On the definition of speedup,” in Proceedings of
the International Conference on Parallel Architectures and
Languages Europe. Springer, 1994, pp. 289–300.

[52] A. Younis, Y. Malaiya, C. Anderson, and I. Ray, “To fear
or not to fear that is the question: Code characteristics of a
vulnerable functionwith an existing exploit,” in Proceedings of
the Sixth ACM Conference on Data and Application Security
and Privacy, 2016, pp. 97–104.

[53] S. Ognawala, R. N. Amato, A. Pretschner, and P. Kulkarni,
“Automatically assessing vulnerabilities discovered by com-
positional analysis,” in Proceedings of the 1st International
Workshop on Machine Learning and Software Engineering in
Symbiosis, 2018, pp. 16–25.

[54] T. Mikolov, S. Kombrink, L. Burget, J. Černockỳ, and S. Khu-
danpur, “Extensions of recurrent neural network language
model,” in Proceedings of the 2011 IEEE international con-
ference on acoustics, speech and signal processing (ICASSP).
IEEE, 2011, pp. 5528–5531.

[55] M. Long, H. Zhu, J. Wang, and M. I. Jordan, “Deep transfer
learning with joint adaptation networks,” in Proceedings of the
International conference on machine learning. PMLR, 2017,
pp. 2208–2217.

[56] S. J. Pan and Q. Yang, “A survey on transfer learning,”
Proceedings of the IEEE Transactions on knowledge and data
engineering, vol. 22, no. 10, pp. 1345–1359, 2009.

[57] L. Torrey and J. Shavlik, “Transfer learning,” in Proceedings
of the Handbook of research on machine learning applications
and trends: algorithms, methods, and techniques. IGI global,
2010, pp. 242–264.

[58] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. Van Den Berg,
I. Titov, and M. Welling, “Modeling relational data with graph
convolutional networks,” in European Semantic Web Confer-
ence. Springer, 2018, pp. 593–607.

[59] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,”
Proceedings of the Journal of machine learning research, vol. 9,
no. Nov, pp. 2579–2605, 2008.

[60] D. Hendrycks and K. Gimpel, “Early methods for detect-
ing adversarial images,” Proceedings of the arXiv preprint
arXiv:1608.00530, 2016.

[61] S. Kokalj-Filipovic, R. Miller, and G. Vanhoy, “Adversarial ex-
amples in rf deep learning: Detection and physical robustness,”
in Proceedings of the 2019 IEEE Global Conference on Signal
and Information Processing (GlobalSIP). IEEE, 2019, pp. 1–5.

[62] D. Meng and H. Chen, “Magnet: a two-pronged defense against
adversarial examples,” in Proceedings of the 2017 ACM SIGSAC
conference on computer and communications security, 2017, pp.
135–147.

[63] A. Loukas, “What graph neural networks cannot learn: depth
vs width,” Proceedings of the arXiv preprint arXiv:1907.03199,
2019.

[64] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li,
L. Fei-Fei, A. Yuille, J. Huang, and K. Murphy, “Progressive
neural architecture search,” in Proceedings of the European
Conference on Computer Vision (ECCV), 2018, pp. 19–34.

[65] M. T. Ribeiro, S. Singh, and C. Guestrin, “”why should i trust
you?” explaining the predictions of any classifier,” in Proceed-
ings of the 22nd ACM SIGKDD international conference on
knowledge discovery and data mining, 2016, pp. 1135–1144.

[66] R. Sato, “A survey on the expressive power of graph neural

networks,” Proceedings of the arXiv preprint arXiv:2003.04078,
2020.

[67] “Findbugs,” http://findbugs.sourceforge.net/.
[68] C. Cadar and K. Sen, “Symbolic execution for software testing:

three decades later,” Proceedings of the Communications of the
ACM, vol. 56, no. 2, pp. 82–90, 2013.

[69] D. A. Ramos and D. Engler, “Under-constrained symbolic
execution: Correctness checking for real code,” in Proceedings
of the 24th {USENIX} Security Symposium ({USENIX} Security
15), 2015, pp. 49–64.

[70] K. Wang and Z. Su, “Learning blended, precise semantic
program embeddings,” in Proceedings of the PLDI, 2020.

[71] Y. Li, S. Wang, T. N. Nguyen, and S. Van Nguyen, “Improving
bug detection via context-based code representation learning
and attention-based neural networks,” Proceedings of the ACM
on Programming Languages, vol. 3, no. OOPSLA, pp. 1–30,
2019.

[72] Z. Wang and M. O’Boyle, “Machine learning in compiler
optimization,” Proceedings of the IEEE, vol. 106, no. 11, pp.
1879–1901, 2018.

[73] P. Godefroid, H. Peleg, and R. Singh, “Learn&fuzz: Machine
learning for input fuzzing,” in Proceedings of the 2017 32nd
IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2017, pp. 50–59.

[74] Y. Chen, D. Mu, J. Xu, Z. Sun, W. Shen, X. Xing, L. Lu,
and B. Mao, “Ptrix: Efficient hardware-assisted fuzzing for cots
binary,” in Proceedings of the 2019 ACM Asia Conference on
Computer and Communications Security, 2019, pp. 633–645.

[75] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, “Deep
learning code fragments for code clone detection,” in Proceed-
ings of the 2016 31st IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 2016, pp. 87–
98.

[76] T. Unruh, B. Shastry, M. Skoruppa, F. Maggi, K. Rieck, J.-
P. Seifert, and F. Yamaguchi, “Leveraging flawed tutorials for
seeding large-scale web vulnerability discovery,” in Proceedings
of the 11th {USENIX} Workshop on Offensive Technologies
({WOOT} 17), 2017.

[77] K. Heo, H. Oh, and K. Yi, “Machine-learning-guided selectively
unsound static analysis,” in Proceedings of the 2017 IEEE/ACM
39th International Conference on Software Engineering (ICSE).
IEEE, 2017, pp. 519–529.

[78] S. A. Gorski III and W. Enck, “Arf: identifying re-delegation
vulnerabilities in android system services,” in Proceedings of
the 12th Conference on Security and Privacy in Wireless and
Mobile Networks, 2019, pp. 151–161.

[79] Z. Huang, D. Lie, G. Tan, and T. Jaeger, “Using safety properties
to generate vulnerability patches,” in Proceedings of the 2019
IEEE Symposium on Security and Privacy (SP). IEEE, 2019,
pp. 539–554.

[80] A. N. Lam, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen,
“Combining deep learning with information retrieval to localize
buggy files for bug reports (n),” in Proceedings of the 2015 30th
IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2015, pp. 476–481.

[81] S. Wang, T. Liu, and L. Tan, “Automatically learning semantic
features for defect prediction,” in Proceedings of the 2016
IEEE/ACM 38th International Conference on Software Engi-
neering (ICSE). IEEE, 2016, pp. 297–308.

[82] X. Shu, D. Yao, N. Ramakrishnan, and T. Jaeger, “Long-span
program behavior modeling and attack detection,” Proceedings
of the ACM Transactions on Privacy and Security (TOPS),
vol. 20, no. 4, pp. 1–28, 2017.

