LiBSHALOM: Optimizing Small and Irregular-shaped Matrix
Multiplications on ARMv8 Multi-Cores

ABSTRACT

General Matrix Multiplication (GEMM) is a key subroutine in high-
performance computing. While the mainstream linear algebra li-
braries can deliver high performance on large and regular-shaped
GEMM, they are inadequate for optimizing small and irregular-
shaped GEMMs, which are commonly seen in new HPC applica-
tions. Some of the recent works in this direction have made promis-
ing progress on x86 architectures and GPUs but still leave much
room for improvement on emerging HPC hardware built upon the
ARMvV8 architecture. We present LIBSHALOM, an open-source library
for optimizing small and irregular-shaped GEMMs, explicitly target-
ing the ARMvS architecture. LIBSHALOM builds upon the classical
Goto algorithm but tailors it to minimize the expensive memory ac-
cessing overhead for data packing and processing small matrices. It
uses analytic methods to determine GEMM kernel optimization pa-
rameters, enhancing the computation and parallelization efficiency
of the GEMM kernels. We evaluate LiBSHALOM by applying it to
three ARMv8 multi-core architectures and comparing it against five
mainstream linear algebra libraries. Experimental results show that
LiBSHALOM can consistently outperform existing solutions across
GEMM workloads and hardware architectures.
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1 INTRODUCTION

General matrix multiplication (GEMM)! is a fundamental build-
ing block for high-performance computing (HPC) applications -
from traditional scientific simulations to emerging deep learning
workloads. While GEMM optimization is a heavily studied field,
existing linear algebra libraries mainly target GEMM operating on
large matrices with regular shapes (i.e., when both dimensions of a
matrix are more or less the same) [3, 6, 19, 41, 42].

Due to the diversity and the evolving nature of HPC workloads,
the size and shape of the input matrices of a GEMM kernel can vary
depending on the application algorithm used and input data. For ex-
ample, new scientific simulation algorithms in computational fluid

!GEMM is a matrix-multiply-accumulate operation, defined as C = aA - B + C,
where A and B are matrix inputs, & and f are scalar inputs, and C is a pre-existing
matrix which is overwritten by the output. Following the naming convention of linear
algebra libraries, in this work, matrix A is denoted as a M X K matrix with M rows
and K columns, matrix B is sized of K X N, and C is sized of M X N.
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dynamics (CFD) like finite element methods and wave equations
often adopt GEMM implementations operating on small matrices to
achieve scalable performance on modern multi-core systems [23].
For example, the implementation of CP2K [23], a popular molec-
ular dynamics simulator, extensively uses GEMMs performed on
matrices of sizes 5 X 5 and 23 X 23. As another example, kernels
of the Nek5000 high-order solver for CFD heavily rely on GEMMs
computing on 8 X 8 matrices. In addition to these conventional HPC
applications, new HPC workloads like deep learning and machine
learning methods are often built upon small GEMM kernels [23].
Some of these data analytic algorithms also need to operate on
irregular-shaped matrices [11, 26] where the magnitude of both ma-
trix dimensions has a significant difference. For example, GEMMs
used by the convolution kernels of the ResNet deep neural network
[22] computes on matrices with one dimension equal to 64 while
the other is greater than 3000.

These new HPC workload characteristics challenge how we op-
timize GEMM computation. Although the traditional linear algebra
libraries like OpenBLAS [42] and BLIS [41] can deliver near-optimal
performance on large and regular-shaped GEMMs, they often give
poor performance on small-sized GEMMs. This is an issue reported
by recent studies [23] on the x86 architecture and observed in our
evaluation on ARMv8 platforms (Section 3). As we will show later
in the paper, while OpenBLAS can deliver over 70% of the peak
performance on large GEMMs, it gives less than 20% of the peak
performance on some representative small and irregular-shaped
GEMMs. As small and irregular-shaped GEMMs are now common
in HPC, there is a critical need to optimize such workloads.

Recently, efforts have been made to optimize small GEMMs [23]
on CPUs or irregular-shaped GEMMs on GPUs [10]. BLASFEO was
among the first attempts to optimize small and irregular-shaped
GEMMs within a single framework [14, 15]. While delivering promis-
ing results on x86 and GPU architectures, existing solutions are
inadequate for optimizing small and irregular-shaped GEMMs on
the ARMv8 based CPU architecture. As we will show in the paper,
existing approaches leave much room for performance improve-
ment on ARMv8 multi-cores due to their strategies of data packing
(that maps the input matrix elements to a linear buffer), processing
edge cases of matrix elements and parallelization. Since multi-core
CPUs built upon the ARMv8 architecture and instruction set are
quickly emerging as an alternative to the x86-based HPC hard-
ware [31, 37], it is highly attractive to have a library dedicated to
optimizing small and irregular-shaped GEMMs on ARVMvS.

This paper presents LiIBSHALOM?, an open-source BLAS library
designed to optimize small and irregular-shaped GEMMs on ARMv8
multi-cores. As a departure from existing BLAS libraries, LIBSHALOM
takes different approaches for data packing, edge-case processing
and parallelization. Like mainstream BLAS libraries, LIBSHALOM
builds upon the classical Goto GEMM algorithm [18], but it tailors
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this algorithm for optimizing small and irregular-shaped GEMM:s
on ARMv8. Unlike existing solutions that process data packing and
GEMM computation in a sequential manner, LIBSHALOM leverages
the SIMD instruction hide memory latency by carefully overlapping
memory accesses incurred by data packing with computation oper-
ations within a GEMM kernel. Unlike conventional BLAS libraries
that always apply data packing, LIBSHALOM determines, at runtime,
if data packing is beneficial by taking into consideration the input
matrix size and the GEMM computation mode. We show how sim-
ple yet effective analytic models can be developed to determine the
GEMM loop tiling parameters to enhance instruction scheduling,
cache locality and efficiency of parallelization and edge-case pro-
cessing. We show that our analytical methods, in combination of
our new, carefully optimized micro-kernel implementations, lead to
significantly better performance over existing BLAS libraries when
processing small and irregular-shaped GEMM on ARMvS.

We demonstrate the benefit of LisBSHALOM? by applying it to
three representative ARMv8 multi-core CPUs, Phytium 2000+ [13],
Kunpeng 920 [4] and ThunderX2 [28]. We evaluate LIBSHALOM
on both small and irregular-shaped GEMMs as well as computa-
tion kernels from real-life applications. We compare it against five
GEMM libraries that have an optimizing back-end for ARM archi-
tectures [1, 15, 23, 41, 42]. We show that LIBSHALOM consistently
outperforms the competing schemes across hardware architectures,
GEMM workloads, computation modes for both single-threaded
and parallel executions. We showcase that, despite being a library-
based approach, LiIBSHALOM can outperform techniques built upon
the just-in-time compilation [23]. The result is a new way for im-
plementing and optimizing GEMM kernels for small and irregular-
shaped GEMMs on ARMv8 multi-cores.

The technical contributions of this paper are:

o It demonstrates how the memory accessing overhead of data
packing can be hidden with computations through SIMD
instructions and scheduling (Section 4).

o It presents a new way to implement the GEMM computa-
tion kernels that achieves better performance over existing
solutions (Section 5).

o It shows how analytical methods can be developed to de-
termine the GEMM kernel optimization parameters for the
ARMv3 architecture (Sections 4, 5 and 6).

2 BACKGROUND
2.1 Problem Scope

Our work focuses on optimizing GEMM performed on small and
irregular-shaped matrix inputs on ARMv8 CPUs. We consider a
GEMM matrix input to be small if two of its dimensions (M, K, or N)
are of a similar size that can fit into the last-level data cache (LLC)
of the CPU. By contrast, an irregular-shaped matrix is where one
dimension is significantly smaller than the other, e.g., a 32 x 50,176
convolutional kernel in a deep neural network [34]. This type of
matrices is also known as tall-and-skinny matrices [10, 12]. The
dimensions here usually refer to M and N dimensions, and the K
dimension is usually not considered [10, 32]. While recent efforts
have been made to optimize small and irregular-shaped matrix

3Code available at [url redacted for double-blind review).
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Figure 1: A typical implementation of GEMM.

multiplications, current solutions mainly target x86 architectures
or GPUs. It remains unclear how small and irregular-sized GEMMs
can be best optimized on emerging ARMv8 multi-core CPUs. Our
work aims to close this gap.

2.2  General Matrix Multiply Algorithm

Figure 1 gives a high-level overview of the Goto GEMM algo-
rithm [18] used by mainstream linear algebra libraries, includ-
ing OpenBLAS [42] and BLIS [41]. The algorithm computes C =
aA - B + fC by first partitioning and packing matrices A, B, and C
into submatrices, so that matrix multiplications can be performed
on the submatrices to improve cache locality. The process of parti-
tioning, packing and computing is performed within nested loops
outlined in Figure 1, described as follows.

Partitioning. The outermost loop (L1) of Figure 1 groups C and B
along the column direction into submatrices of sizes M X nc and
K X nc respectively. The second level loop (L2) partitions A into
submatrices on the column dimension of size M X kc. It also further
partitions the K X nc submatrix of B into row panels of size kc X nc.
Essentially, the outermost two loops translate matrix multiplication
A -B to a panel-to-panel multiplication (GEPP). Then, the third level
loop, L3, partitions the M X kc panels of A into mc X kc blocks, and
partitions a M X nc submatrix of C into row panels of size mc X nc.
The choice of mc and nc is important for maximizing the cache
locality after the packing stage, described next.

Data packing. The outermost two loops of the GEMM algorithm
packs the kc X nc panel of B into a linear buffer, Bc. The algorithm
will try the largest panel size while the entire Bc can be stored in the
last level data cache [39]. Similarly, at loop L3, the algorithm packs
submatrices of A generated at this loop level to a linear buffer Ac to
fit into the L2 data cache. Data packing is vital for achieving high-
performance GEMM by reducing memory access latency through
cache locality optimization [21, 27]. However, as we will show later,
the existing packing implementation is ill-suited for processing
small and irregular-shaped matrices on ARMv8 multi-cores.

Kernel. Matrix multiplication is performed at the kernel level using
a three-level loop, known as general block-times-panel multiply
(GEBP) in BLAS. The kernel updates an mc X nc panel of C by
calculating the outer product (via dot to vector multiplications)
of a block of Ac of size mc X kc and a panel Bc of size kc X nc.
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(b) Irregular-shaped GEMM on Phytium 2000+

Figure 2: GEMM performance on (a) small square and
(b) irregular-shaped matrices on the ARMv8-based
Phytium 2000+ processor. Existing libraries are ineffective
in processing small or irregular-shaped GEMMs.

Specifically, the outermost loop of the kernel (L4) partitions a block
Bc into slivers (i.e., micro-panels) of k¢ X nr and the second-level
loop of the kernel (L5) partitions a block Ac into slivers of mr X kc.

Micro-kernel. The innermost loop of the GEBP kernel performs a
sequence of updates of an mr X nr sub-block of C using an mr x 1
column sub-sliver of Ac and a 1 X nr row sub-sliver of Bc. This
innermost loop is also known as the micro-kernel in BLIS [41].

Edge cases. When the matrix size is not a multiple of the micro-
kernel size (e.g., M is not a multiple of mr, or N is not a multiple
of nr), we have to process the remaining elements outside the
partitions. Existing approaches either pad the matrices with zeros
to match the kernel size [41], or use another dedicated routine to
process the remaining edge elements [42].

3 MOTIVATION AND OVERVIEW

Existing GEMM libraries like OpenBLAS [42] and BLIS [41] are de-
signed to optimize GEMM operating on large matrices. While they
can obtain near peak hardware performance on large matrices, they
deliver low performance on small and irregular-shaped matrices.
A few libraries like BLASFEO [15] offer certain optimizations for
small GEMMs but do not take full advantage of a multi-core design
and the workload characteristics. As concrete examples, we evalu-
ate the GEMM performance of four representative linear algebra
libraries, OpenBLAS, BLIS, ARMPL [1] and BLASFEO, on Phytium
2000+, a 64-core ARMv8 multi-core [9, 13, 40].

3.1 Motivation Results

In Figure 2, we normalize the measured performances (FLOPS) to
the theoretical peak CPU computational performance.

Small-sized GEMM. Figure 2a shows the GEMM performance
on square matrices (i.e., M = N = K), and we see that existing
GEMM libraries also give poor performance when the matrix size is
small?. For example, even the best-performing library only achieves
around 60% of the peak performance when the matrix size is 32. By
contrast, they can achieve over 80% of the peak performance when
the matrix size is 256 or larger.

Irregular-shaped GEMM. Figure 2b shows the performance of
irregular-shaped GEMMs when we fixed N and K to 10, 000 while
varying M. Matrices of this scale and size are often seen in scientific
simulation kernels like high-order FEM codes and sparse direct
solvers using super-block [23]. For this type of GEMM matrices,
the highly optimized BLIS library can achieve 70% of the peak
performance when M is 4096. However, all libraries deliver less
than 40% of the peak performance when M is smaller than 128.
When M = 16 and N = 50000, a representative setting for certain
neural network workloads [24, 25], all evaluated libraries achieves
less than 25% of the peak performance.

3.2 Optimization Opportunities

As can be seen from the motivation results, there is much room
for improvement for small and irregular-shaped GEMM on ARMv8
multi-cores, and none of the test libraries is effective at both small
and irregular-shaped matrices. After close examinations, we iden-
tify three missing opportunities of current linear algebra libraries.

First, although the packing overhead is small (< 3%) on large
matrices [38], it can account for 50% of the execution time for small
GEMMs (e.g., when M = 32 in Figure 2) and cannot be ignored.
Existing GEMM libraries always pack data even when it is not ben-
eficial to do so. When the packing overhead outweighs the benefit
small-sized GEMMs, existing solutions give a poor performance.

Secondly, we observe around 10% drop in the FLOPS when pro-
cessing edge cases for small-sized matrices. This performance degra-
dation is observed for all testing GEMM libraries, regardless of
which of the two edge case strategies described in Section 2.2 is used.
While the overhead of handling edge cases is negligible for large ma-
trices (less than 1% of the execution time when M = N = K = 5000),
the cost can be significant for small and irregular-shaped matrices.

Thirdly, we found that the existing parallelization scheme for
GEMM is ineffective for irregular-shaped matrices. For example,
when performing GEMM on matrices of sizes M = 32,N = K =
10000, OpenBLAS and BLIS only deliver 6% and 14% of the peak
performance on Phytium 2000+. This is because when distributing
the work across parallel threads, they ignore the workload charac-
teristics of irregular-shaped GEMMs [36], creating many edge cases
to be processed. These edge cases in turn bring in extra overhead
that could otherwise be avoided.

3.3 Overview

In light of these observations, our work aims to design a better ap-
proach for packing, handling edge cases and parallelization, specif-
ically targeting small and irregular-shaped GEMMs on the ARMv8
architecture for HPC. To this end, we develop LIBSHALOM, an open-
source optimizing library for small and irregular-shapped GEMM.

4Since BLASFEQ is designed to optimize GEMM on matrices that can entirely fit into
the L2 data cache [14, 15], it is excluded from irregular-shaped GEMM in Figure 2b.



Like most of the BLAS libraries [1, 14, 41, 42], LIBSHALOM supports
four types of GEMM kernels, NN, NT, TN and TT. Here, T and N
respectively stand for a transposed and not transposed matrix. For
example, GEMM for matrices A - B under the NT mode means ma-
trix B is transposed (T) but matrix A is not (N). Follow the common
practice of low-level systems libraries, LIBSHALOM provides APIs
in C and C++ to be used by the applications, but implements its
underlying GEMM kernels in assembly for performance reasons.

Algorithm 1 outlines the LiBSHALOM’s GEMM implementation
under the NN mode. Like mainstream BLAS libraries, our imple-
mentation follows the Goto algorithm described in Figure 1, but
introduces several optimizations. Firstly, LIBSHALOM removes the
always-executed packing steps, i.e., converting matrices B and A
to linear buffers Bc and Ac, respectively from Figure 1. For cases
that needed to be packed, we perform packing at the micro-kernel
level rather than the kernel level. Secondly, we exchange the L2
loop and the L3 loop from Figure 1 to yield a more contiguous
access on matrix A, and use loops L1 and L3 for parallelization
(Section 6). Note that we mainly use the outer-product formulation
(scalar-vector multiplication) at the micro-kernel, which has greater
computation-to-memory ratio (CMR) than the inner-product for-
mulation (vector-vector multiplication), to update matrix C. Here,
the CMR is computed as the ratio of arithmetic instructions to mem-
ory load and store instructions (see Section 5.2.1). A larger CMR
indicates that more arithmetic instructions are available to overlap
with memory accesses to hide the memory latency.

Roadmap. In the following sections, we present the three key
optimizations of LiBSHALOM for minimizing the overhead of small
and irregular-shaped GEMMs, by redesigning the kernel (Section
4), micro-kernel (Section 5) and parallelization strategy (Section 6).
Without losing generalization, we describe our approach under the
NN and NT modes using single-floating point (FP32) operations.
However, our optimizations are equally applicable to the other
GEMM modes and double-floating points (FP64), which all are
supported by LiBSHALOM. We also assume the matrices are stored
in the row-major format in our discussions.

4 GEMM KERNEL DESIGN
4.1 Design Principals

For kernel computation A - B, existing BLAS libraries convert each
matrix to a linear buffer at the packing stage, regardless of the
mode (N or T) and the matrix size. Our insight is that packing is
unnecessary for small matrices or those being sequentially accessed
in the micro-kernel because they can be accessed in a cache-friendly
manner. For example, as matrix A is accessed rows by rows under
the NN mode, the cache prefetching mechanism can largely hide the
main memory access latency. For this reason, it is unnecessary to
pack a large matrix A and pay the potentially expensive cost of data
packing. For scenarios where packing the matrix can be profitable,
LiBSHALOM tries to overlap the memory loads and stores incurred
by packing with computation instructions inside the micro-kernel
(Section 5.3). Therefore, LiBSHALOM only performs packing when
@ the data cannot be accessed continuously in the micro-kernel
(i.e. cache-unfriendly), or ® the CMR of the micro-kernel is too low
to hide the memory latency without packing.

Algorithm 1: NN mode GEMM implementation

Input: Matrix A,B, Buffer Bc
Output: Matrix C
1 for jj=0— N step =nc do

2 for ii =0 — M step = mc do

3 for kk =0 — K step = kc do

4 for j = 0 — nc step = nr do

5 if size(B)>L1 then

6 for k =0 — kc step =1 do

7 C(iizii+mr, jj+j:jj+j+nr)+=A(ii:

ii+mrikk +k) x B(kk+k,jj+j:jj+j+nr);

8 Be(k,0:nr) =B(kk+k,jj+j:jj+j+nr)

9 for i = mr — mc step = mr do

10 for k =0 — kc step =1do

1 C(ii+izii+i+mr,jj+j:jj+j+nr)=
A(ii+i:ii+i+mr,kk+k)xBc(k,0:nr)

12 else

13 for i = 0 — mc step = mr do

14 for k =0 — kc step =1do

15 C(ii+i : ii+i+mr, jj+j : jj+j+nr) = A(ii+i :
ii+i+mr, kk+k)xB(kk+k, jj+j : jj+j+nr)

4.2 NN Mode Packing Strategy

Depending on the size of matrix B, we apply two packing strategies
in the NN mode, described as follows.

No packing. If the size of matrix B is smaller than the L1 data cache
(i-e., size(B) < L1 at line 12 of Algorithm 1), we skip the packing
step. Instead, we go straight to divide matrix A into multiple tiles of
size mr XK, and then update matrix C at lines 13 - 15 in Algorithm 1.

Packing large B. If matrix B is larger than the L1 data cache
capacity, we pack the tiled B into a linear buffer, Bc, and, at the
same time, we update parts of matrix C in first distributed loop (lines
6-8 of Algorithm 1). Our algorithm utilizes the fused-multiply-add
(FMA) instructions® to perform the outer-product computation at
line 7 of Algorithm 1. As the FMA instruction can be executed
concurrently with independent load and store instructions (thanks
to out-of-order instruction scheduling), we use it to hide the packing
overhead when packing matrix B at line 8 of Algorithm 1. After
packing, Bc is used to update the mr—mc rows of C during lines 9 -
11 in Algorithm 1. With a carefully designed micro-kernel (Section
5.3), we ensure that the number of CPU cycles for executing the
FMA instructions can hide the overhead for filling Bc. Furthermore,
since our kernel reuses Bc across computation iterations for the
second distributed loop at lines 9 - 11 in Algorithm 1, we increase
the chance for Bc to be kept in the L1 data cache.

Packing choice. For the scenarios where both matrices A and B
exceed the L1 data cache size, we will pack B instead of A. Our
design choice can be justified using Figure 3. From the diagram, we
see that for any given row of A, the CPU can continuously access
the 0—>kc elements within the same row. By contrast, the CPU
can only do so for the 0—>nr elements at each row of B. Since our
implementation uses a small nr (12 or 6; see Section 5) to promote
the use of the vector registers, accessing to a none-packed, large B
would exhibit poor cache locality. For this reason, we prioritize the
packing of the matrix B at the NN mode. Because accessing matrix

5The FMA instruction computes a X b + ¢ using one single rounding step.
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Figure 3: Kernel design using the FP32 NN kernel mode as a
working example.

A is nearly continuous, we do not pack A even it is the only matrix
that is larger than the L1 data cache at the NN mode.

4.3 Other Kernel Modes

In the NT mode, we always pack matrix B because computation is
performed on the transposed (T) matrix where elements cannot be
accessed along the N dimension with aligned vectorization instruc-
tion. This is depicted in Figure 3 where the continuously stored nr
elements of B are transposed to be stored at discontinuous memory
locations (assuming the row-major storage). The outer-product is
ineffective under this setting, because this formulation requires
at least one of the M dimension of A and the N dimension of B
to be continuously stored in memory. To meet this requirement,
LiBSHALOM chooses to pack elements from matrix B to a linear
buffer Be so that matrix elements are stored in continuous memory
space. Here we also overlap computation and packing. Similarly, for
the TT mode, we pack matrix A as accessing to matrix B is nearly
continuous (like how we access matrix A in the NN mode). Like
the NN mode kernel, we use the FMA instruction to concurrently
update parts of matrix C while preforming data packing.

5 MICRO-KERNEL DESIGN

LiBSHALOM has three types of micro-kernels, designed to minimize
memory access latency and edge case processing. The first type of
micro-kernels is the main routine for computing A-B, corresponding
to lines 10-11 of Algorithm 1. The second type of micro-kernels is
used at the initialization stage to perform packing while updating
parts of matrix C. This corresponds to lines 6-7 of Algorithm 1 at
the NN mode. The third type of micro-kernels is used to process
the edge cases; see Section 2.2.

5.1 Design Principals

Our micro-kernel implementations aim to maximize the CMR,
as prior studies have shown that optimizing this metric is im-
portant for small and irregular-shaped GEMM to achieve high-
performance [23, 25]. We achieve this by taking advantages of the
instruction parallelism of GEMM and the vector registers of the
ARMv8 architecture, which provides 32 128-bit-wide vector regis-
ters (referred to as V0 — V31). The key challenge here is to find the
right loop tiling parameters, mr and nr, to best utilize the vector reg-
isters to maximize the CMR. To this end, we use analytic methods to
determine the tiling parameters for the three types of micro-kernels,
described in the next subsections. We remark that our distributed
micro-kernel design is different from OpenBLAS [42] and BLIS [41]

where the packing step and micro-kernel are completely separated
like Figure 1.

Working example. In the following subsections, we describe our
micro-kernel design using the FP32 NN kernel mode depicted in
Figure 3 as a working example. However, our design methodology
is equally applied to other kernel modes and FP64 GEMM:s.

5.2 Main Micro-kernel

5.2.1 Optimization constraints. For the NN mode micro-kernel, as
show in Figure 3, we need mr, nr/j and mr X nr/j vector registers
to store elements from matrices A, B, and C respectively, where j
is 4 and 2 for FP32 and FP64 GEMM respectively. In addition, like
[39], we reserve one vector register to prefetch the elements of A
or B. To make sure that the matrix elements can fit into the number
of available vector registers (i.e., 31), mr and nr have to satisfy:

(1)

mr + 25 4 MEAE (32 - 1)
nr%j =0

Since each vector register stores j elements, we wish to set nr to
be a multiple of j, i.e., nr%j = 0, so that we do not waste a vector
register to store fewer than j elements from matrix B.

5.2.2  Optimization goal. In our NN mode micro-kernel, vector
registers store elements of matrix B are released after exiting from
the current iteration. By contrast, vector registers for storing matrix
A elements will be freed every j iterations after all the j elements on
the K direction (e.g., 1, 2, 3, 4 in Figure 3 for FP32 GEMM) have been
used. Therefore, for every j iterations, we need mr load instructions
to load elements from matrix A. Additionally, we need nr = nr/j X j
loads to fetch elements from matrix B. For computation, we apply
the scalar-vector FMA instruction to mr Xnr matrix elements, which
translates to 2 X mr X nr computational operations as each FMA
instructions contains two operations, addition and multiplication.
Putting it together, the average CMR of our micro-kernels is:

2 X X
CMR = =ZMrXnr (2)
mr + nr

5.2.3 Solving the equations. To find an integer value of mr and
nr that can maximize the CMR, we apply the Lagrange multiplier
method [20] to solve the constraints defined in Equation 1 with the
goal to maximize the CMR defined in Equation 2. This gives us mr =
7 and nr = 12 to use in our main micro-kernel implementation for
the ARMv8 architecture. Not only NN mode, but we also use micro-
kernel of this size for other mode GEMMs. The general process is
shown in Algorithm 2.
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5.3 Micro-kernel for Packing

The packing micro-kernel (lines 6-8 of Algorithm 1) will only be
invoked if the relevant matrix is larger than the L1 data cache.

5.3.1 Medium-sized matrix. If matrix B is larger than the L1 data
cache but smaller the LLC, we only need to pack the nr elements
of B used in the current iteration of micro-kernel; after that, the
elements that are continuous with these nr elements would be
prefetched into the data cache.

5.3.2 Larger and Irregular-shaped matrices. We now describe how
we pack matrices that cannot fit into the LLC cache.

NN mode. To reduce cache and TLB misses, when accessing the
0—nr elements of B at the current iteration of j loop in Algorithm 1,
we pack the next batch of elements of B as required by the next
iteration into another part of the linear buffer, Bc in line 8 of Algo-
rithm 1. This is because when these elements are used in the next
iteration of the j loop, cache and TLB misses may occur frequently.
As we iterate over this micro-kernel, we pack more elements into
Bc. As a result, we will have already packed ¢ X nr of such elements
when executing the tth iteration of Jj loop, where t = 0, 1, 2...n. Note
that mr and nr in the packing kernel are set to the same values as
the main kernel (i.e., mr = 7 and nr = 12 for FP32). In implementa-
tion, we set ¢ to be 0 and 1 for small and irregular-shaped GEMMs,
respectively. This means that the former only performs step 1 in
Figure 4 in each iteration, while the latter performs steps 1 and 2.

NT mode. In this case, B is not continuous in the N dimension,
which affects the use of the 7 X 12 main micro-kernel to update the
mr—mc rows of C. To overcome it, we design a 7 X 3 packing micro-
kernel for NT mode GEMM, as show in Figure 5. In the computation
process, we use the inner-product formulation to update C, and
the processor accesses A and B along the K dimension. In each
iteration, we use seven loads to fetch the elements of A to VO — 6,
and use three loads to fetch the elements of B to V7 —9. The packing
micro-kernel performs 21 (7 X 3) vector-vector FMAs to produce 84
(4x21) elements, which are stored in V10-31. At the same time, four
elements of V7-V9 are scattered to Bc, and the distance between the
elements is 12. Additionally, the elements in the same position of
vectors are scattered to adjacent positions. For example, in Figure 5,
the distance between 0 and 1 in the same vector is 12 elements, but
0 in different vectors are next to each other in Bc. At the end of the
micro-kernel, the four elements of V10-31 need to be reduced to one
as using vector-vector FMAs. To get a complete Bc, we need to call
packing micro-kernel four times (12/3). The micro-kernel uses the

one iteration in micro-kernel
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Figure 5: Micro-kernel for FP32 NT mode packing.

Algorithm 3: Micro-kernel for NT mode data packing

1 for j =0 — 12 step=3 do

2 for k = 0 — kc step=4 do

3 (VO-V6) «— A(0:6,k : k+3);

4 (V7-V9) « B(0:2,k:k+3);

5 (V10 - V31) « FMA (V0 —V6), (V7 —V9) /% vector-vector
multiply */

6 (V7 =V9) scatter to Be(k : k+3,j: j+2)

7 Reduce (V10 — 031) to V10.[0] — V31.[0];

8 Store to C

same 7 X kc tiled matrix A, but uses different 3 X kc tiled matrix B.
The storage format of Bc is the same as that of Figure 4. The general
process of packing micro-kernel is shown in Algorithm 3, where the
vector-vector FMAs and scatter instructions occur interchangeably.

TN and TT modes. Following the discussion in Section 4.3, for TN
mode, we apply the same strategy used for the NT mode to pack
matrix A. Similarly, for TT mode, we apply the strategy used for
the NN model to pack matrix A, depending on its size.

We want to highlight that our implementation interleaves the
memory load and store instructions required in the packing step
with FMA computation instructions like Figure 6. This is the key
difference between LiBSHALOM and all existing GEMM implemen-
tations (like OpenBLAS and BLASFEO), where the packing and
micro-kernel routines are executed in a sequential order. As we
show later in the paper, by overlapping packing with the computa-
tion instructions, LIBSHALOM gives significantly better performance
for small and irregular-shaped GEMM:s.

5.4 Edge Processing Micro-kernel

Our edge-case processing kernel adapts the OpenBLAS implemen-
tation [42], but enhances it with better instruction scheduling de-
signed for small and irregular-sized GEMM. Considering the Open-
BLAS 8 X 4 edge micro-kernel for ARMv8 architectures shown in
Figure 6a, this implementation has two drawbacks on the ARMv8
architecture. Firstly, it fails to hide the memory latency with com-
putation instructions. That is, the load instructions are scheduled
in a batch fashion. Secondly, there is no sufficiently large instruc-
tion distance between two dependent instructions. As illustrated in
Figure 6b, our implementation overcomes these two drawbacks by
prefetching the matrix elements required by the current iteration
in the previous one and insert the load instructions between FMA
instructions to hide the latency. Our experimental results show that
this strategy significantly improves the OpenBLAS implementation.
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Figure 6: OpenBLAS’ 8 X 4 edge-case processing micro-kernel
(a) and a better instruction schedule used by LiBSHALOM (b).

5.5 Porting to Other Hardware Architectures

Our approach is generally applicable and can be easily ported to
other architectures. All our discussions so far target the 128-bit vec-
tor register supported by our evaluation platforms. Some new ARM-
based many-cores, like the FUJITSU ARMv8-based A64FX [33] and
future ARMv?9 processors support the latest ARM Scalable Vector
Extension (SVE) [2]. This extension allows the CPU implemen-
tation to choose a vector length that is any multiple of 128 bits
between 128 and 2048 bits. Our approach can be applied to a longer
vector length with an revised mr and nr computed according to
the available number and length of vector registers. In addition to
ARM-based CPUs, our techniques can also be ported to modern x86
architectures with vectorization extensions and FMA-like instruc-
tions. Doing so will require changing the constraints of Equation 1
to match the hardware parameters to derive mr and nr. Furthermore,
to adapt to different cache sizes, we can adjust the values of me, nc
and kc [27]. Other than these parameter adjustments, we believe
our analytical methods and instruction scheduling optimizations
can remain unchanged.

6 PARALLELIZATION METHODS

Small-sized GEMM is typically executed with a single thread, but
irregular-shaped GEMM can benefit from parallel execution. Lis-
SHALOM applies a static work partitioning scheme to parallelize
irregular-sized GEMM by using the fork-join operating system prim-
itives. By default, we use all available cores of the CPU. For a CPU
with T cores, we will spawn T parallel threads.

6.1 Work Partitioning

To ensure work balance among parallel threads, LiBSHALOM adopts
a two-level parallelization strategy. It first divides matrix C into a
grid of sub-blocks, where each thread updates one of the sub-blocks.
Since we partition the work across T parallel threads, each parallel
thread will perform MTXK X NTXK computation operations for A - B.
Similarly, the number of memory accesses required by each parallel

thread is 522 MXK NTXK

where T, and T, are the number of threads
(or cores) a551gned to the M and N dimensions respectively, where
Tin X Ty = T. Therefore, the CMR for updating a sub-block is:
Mx N
CMR= ——————t ®)
MXTy+NX+

Table 1: Hardware evaluation platform

Phytium 2000+  KP920 ThunderX2
Peak performance (FP32 GFLOPS) 1126.4 2262.4 1280
#Cores 64 64 32
Frequency 2.2 GHz 26GHz  2.5GHz
L1 cache 32KB 64KB 32KB
L2 cache 2MB 512KB 256 KB
L3 cache None 64MB 32MB
RAM 64 GB 64 GB 64 GB

Like our main micro-kernel design (Section 5.2), we wish to
maximize the CMR. By applying the inequality of arithmetic and
geometric mean method, we have:

MXN
CMR< — XN 4)

2X VT XM XN

where both sides of the equation will equal if M X T, = N XT 1p

TXN , CMR would reach its maximum

other words, when T,, =
value. By taking into cons1derat10n the overhead of the packing
micro-kernel, we take the up-bound value of T, ie., T,, = [ TXTN],
to maximize the CMR. We note that T mod T,, = 0 to ensure the
number of cores can be equally divided among parallel threads. For
example, for parallelzing GEMM with M = 2048 and N = 256 on
a 64-core processor, we would set T, = 4, which leaves us with
T = 16 (as Try X T;, = T). To minimize the thread synchronization
overhead, we choose to parallelize two outer loops of the GEMM

kernel (i.e., L1 and L3 in Figure 1) , instead of the inner loops.

7 EXPERIMENTAL SETUP

7.1 Evaluation Platforms

Hardware. We evaluate LIBSHALOM on three representative ARMv8
multi-core architectures: Phytium 2000+ [13], Kunpeng 920 (KP920)
[4] and ThunderX2 [28]. Table 1 lists the specification of the hard-
ware platforms used in our evaluation. Note that on Phytium 2000+,
the L2 cache is shared between a cluster of four cores, while on
KP920 and ThunderX2, the L2 cache is private to a processor core.

Systems software. Our evaluation platforms run Linux kernel
version 4.19.46. We compile the benchmarks using gcc version
8.2.1 with the "-O3" compiler option. LiBSHALOM uses OpenMP to
parallelize irregular-shaped GEMMs.

7.2 Workloads

We evaluate LiBSHALOM by applying it to both small and irregular-
sized matrices. The size (M X N X K) of the small matrices ranges
from 8 X 8 X 8 to 128 X 128 X 128, which are the typical matrix sizes
seen in applications like scientific simulation workloads like SeisSol
[7] and Nekbox [5]. The M or N of the irregular-sized matrices used
in our evaluation ranges from 32 to 256. These types of irregular-
sized matrices are commonly seen convolution neural networks
(CNN) [30, 34]. Like prior work [24], we initialize the matrices by
populating them with random floating-point numbers (0 to 1). In
addition to the synthetic matrix inputs, we also apply LIBSHALOM
to the computational kernels from CP2K (an open-source molecular
dynamics simulator) [23] and the VGG CNN [25]. We report the
results for running GEMM under the NN and NT modes, but we also
observe similar performance trends under the TN and TT modes.



7.3 Competitive Approaches

We compare LiBSHALOM against five GEMM libraries that have
a back-end specifically tuned for ARMv8. These include Open-
BLAS [42], BLIS [41] and ARMPL [1], which are designed to opti-
mize large GEMM, as well as LIBXSMM [23] and BLASFEO [15],
which specifically target small-matrix GEMM. Note that LIBXSMM
uses just-in-time (JIT) compilation to optimize the GEMM kernel
on the underlying architecture and uses a code cache to minimize
the compilation overhead across different runs of the same kernel.
Unless stated otherwise, we always run LIBXSMM on the target
GEMM kernel to warm up its code cache so that the JIT compila-
tion overhead is not included in its execution time measurement.
We also note that ARMPL is the official ARM performance library,
which is heavily optimized for BLAS by ARM.

7.4 Evaluation Methodology

For small-sized GEMM, we measure the single-threaded perfor-
mance because the small matrix size does not benefit from parallel
CPU execution. This is standard practice when processing small-
sized matrices where parallelism is achieved by running multiple
GEMM kernels to process independent matrices. For irregular-sized
matrices, we report the multi-threaded performance using all the
cores of a CPU. Note that because BLASFEO does not support multi-
threaded execution, it is excluded from the irregular-sized matrix
experiments to ensure fairness.

Performance report. We run each GEMM kernel 10 times and
report the geometric mean of the runtime. We show the variations
across different runs as a min-max bar.

8 EXPERIMENTAL RESULTS

8.1 Single-threaded Small GEMM

In this experiment, we show the FP32 throughput for running small
GEMMs on the NN and NT modes. We also observe similar trends
for TN and TT modes. We note that we see similar speed-ups when
applying LiBSHALOM to double-precision workloads, although the
throughput is roughly half of the FP32 performance across all test
methods.

Figure 7 shows the GEMM performance by first warming up the
cache - a typical scenario where the small matrices data has been
preloaded into a certain cache before launching the GEMM ker-
nel. This is the evaluation methodology adopted by the source
publications of LIBXSMM [23] and BLASFEO [15]. In this sce-
nario, LIBSHALOM consistently outperforms the competing methods
across benchmarks and evaluation platforms. The advantage of
LiBSHALOM is noticeable on smaller matrices. For example, when
M = N =K = 8, LiBSHALOM delivers 2X higher throughput than
BLASFEOQ, the best-performing alternative approach. We note that
this GEMM kernel size is widely used in scientific simulation al-
gorithms, including the NekBox CFD solver [23]. When the ma-
trix size increases to 128, LIBSHALOM still gives at least 5% (up to
10%) higher throughput compared to the alternative approach. This
benefit mainly comes from the optimized micro-kernels used by
LiBSHALOM. We also observe that LIBSHALOM gives higher perfor-
mance for GEMM running on the NN mode than that of the NT
mode, especially on smaller sized matrices. This is because, unlike

BN BLIS BB OpenBLAS I ARMPL I LIBXSMM EEE BLASFEO ] LibShalom

=
=
a_
==
=
E=
BE=
E=
==

8 16 24 32 40 48 56 64

128

80 88 96 104 112 120

=
=
=
==
B
B
B
==

8 16 24 32 40 48 56 64 72 80 88 96
M=N=K (NT mode)

(a) Phytium 2000+

40 BLI NBLA! ARMPL LIBXSMM BLASFE LibShalom
a - . = = P = a o o a

GFLOPS (FP3;
=N W
o o o

E 3

E

E

T 40 48 56 64

Z
4\1
2N

ode)

N
o

104 112 120

128

=

12

©

o
]

GFLOPS (FP32)
= N W
o o

|

—
=
—
—
=

Ja068
dild

40 48 56 64 72 80 88 96
M=N=K (NT mode)

(b) KP920

80 88 96 104 112 120

104 112 120

N
o

N BLIS BN OpenBLAS BB ARMPL EEE LIBXSMM [ BLASFEO [ LibShalom

dladadl

8 16 24 40 48

GFLOPS (FP32)
= N W
o O o
N
(<)}
-;
.
=
N
.
.
-L.
=
o
.
.

80 88

i

128

N
o

104 112 120

Ad g

M=N=K (NT mode)

(c¢) ThunderX2
Figure 7: Small GEMMs on our evaluation platforms.

GFLOPS (FP32)
NI
o o o
I
I
I }
i )
=
N
f
I )
a3
®
I
I

in the NT mode, NN mode GEMM under LiBSHALOM does not pack
matrices that can fit into the L1 data cache; see Section 5. Overall,
LiBSHALOM gives the highest throughput across the matrix settings
by giving 1.05 ~ 2X higher throughputs across hardware platforms
and manifests more significant advantages on smaller matrices.
Figure 8 shows the results when the GEMM kernel was launched
from a cold cache where the matrix data are not presented in the
data cache. In this evaluation scenario, LIBSHALOM demonstrates a
similar performance trend as Figure 7, outperforming alternative
schemes on most of the test cases. On a few matrix sizes, LiB-
Suarom does not give noticeable advantages over BLASFEO - the
best-performing alternative method. These matrix sizes are a (or
nearly) multiple of BLASFEO’s 8 X 8 micro-kernel; as such, there is
no or little edge-case processing overhead incurred by BLASFEO,
where our edge-case optimization does not demonstrate a benefit.
Nonetheless, LiBSHALOM delivers the highest overall throughout
and outperforms other schemes for most of the matrix settings.

8.2 Parallelized Irregular-shaped GEMM

Figure 9 shows the results on irregular-shaped GEMM using all the
CPU cores for parallelization on Phytium 2000+. Due to the space

112 120

=



[
o

BN BLIS B0 OpenBLAS @ ARMPL EEE LIBXSMM EEE BLASFEO CJ LibShalom

=
N

» 0

GFLOPS (FP32)

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128
M=N=K (NN mode)

=
o

ol iR LA

-
N
1
1
)
h
)
1
)
]
1

IS

GFLOPS (FP32)
[e:]

8 16 24 32 40 48 56 64 72 80 88 96
M=N=K (NT mode)

(a) Phytium 2000+

BB BLIS B8N OpenBLAS B3 ARMPL EE0 LIBXSMM 0 BLASFEO CJ LibShalom

104 112 120 128

N
o

W

o o o

GFLOPS (FP32)
=N W

M=N=K (NN mode)

—

8 16 24 32 40 48 56 64 72 80 88 96 104 112

120 128

GFLOPS (FP32)

4

30 _ .

20

10

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

M=N=K (NT mode)

(b) KP920

3

=

N
o

BN BLIS BN OpenBLAS @ ARMPL B LIBXSMM =0 BLASFEO CJ LibShalom

il

o
)
)

o o

GFLOPS (FP32)
=N W

=

M=N=K (NN mode)

3

N
o o
>

)

)

)

)

o

8 16 24 32 40 48 56 64 72 80 88 96 104 112

120 128

GFLOPS (FP32)
=N W
o

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

M=N=K (NT mode)

(c) ThunderX2
Figure 8: Small GEMMs with a cold cache to start.

constraint, we show the results under the NT mode, but we observe
similar performance trends in other modes. Like prior work [35],
we set K to a sufficiently large number (5000 in our evaluation) to
drive the last run data out of the last level data cache to avoid the
artificially good performance due to a hot data cache across multiple
runs. Note that we omit the results of LIBXSMM and BLASFEO in
this experiment as they are tuned for small GEMMs and give a poor
performance on irregular-shaped GEMMs.

LiBSHALOM significantly outperforms the alternative approaches
across our evaluation platforms, yielding on average 1.8X perfor-
mance improvement over the second-best performing method, BLIS.
The performance benefit of LIBSHALOM tends to be more signifi-
cant for smaller matrix sizes (i.e., when M or N are smaller). For
example, in Figure 9, for GEMMs with M = 32, LIBSHALOM gives
2.6x higher GFLOPS over BLIS. This is largely due to the more
efficient packing strategy adopted by LiBSHALOM when processing
small matrices. LIBSHALOM also demonstrates better performance
over OpenBLAS and ARMPL because its parallelization strategy
can minimize the overhead of processing edge cases. Although
ARMPL is an official BLAS library developed by ARM for parallel
GEMMs, it delivers lower performance compared to LIBSHALOM.
Once again, L1BSHALOM’s advantage is greater when M and N are

=

small, suggesting that LIBSHALOM is highly effective in handling
irregular-shaped matrices.
Figure 10 shows how the LiBSHALOM irregular-shaped GEMM

performs on KP920 and ThunderX2. Compared with the best-performing

baseline, BLIS, LiBSHALOM improves the performance by 1.8x and
1.4x% respectively, on average on KP920 and ThunderX2. The results
confirm that LIBSHALOM is generally applicable and can deliver
portable performance across representative ARMv8 processors.

8.3 Scalability

Figure 11 shows the scalability on performing an irregular-shaped
GEMM kernel of {M x N x K}={64Xx50176 X576} from the popular
VGG convolutional neural network [24]. The results are normalized
to the performance obtained by the single-threaded OpenBLAS
execution. As can be seen from the diagram, LIBSHALOM not only
outperforms other approaches but also exhibits the best scalability
as the number of threads used increases. And the maximum speedup
is 49x for Phytium 2000+, 88 for KP920, and 38% for ThunderX2.

8.4 L2 Data Cache Locality

In this experiment, we measure the L2 data cache miss count using
the hardware performance counter. The experiment was performed
on an irregular-shaped, NT mode GEMM with input matrix sizes
of M = 64, N = 50176, where K ranging from 576 to 3744, with
a step of 128. The setting ensures that the data required by the
GEMM kernel can fit into the L2 data cache in an ideal scenario.
Hence, a good GEMM routine should have low L2 data cache misses.
The results are shown on KP920 and ThunderX2, because we can
access the performance counter through the Linux perf profiler
on these two platforms. Figure 12 shows the reduction of L2 cache
misses using the OpenBLAS measurement as the baseline - the
higher the reduction is, the better L2 cache locality an approach
has. LiBSHALOM experiences the least frequent cache misses across
all matrix sizes, representing around 20% reduction in the cache
misses on KP920. This is because LiBSHALOM chooses to not pack
matrix A under the NT mode; instead, it exchanges loops L2 and L3
in Figure 1 to improve the locality when accessing matrix A within
the GEMM kernel. By eliminating the memory loads and stores
introduced by data packing, LIBSHALOM improves the computation
kernel’s cache locality, leading to less frequent cache misses.

8.5 Breakdown of Optimization Techniques

In this experiment, we measure how the proposed packing and
edge-case-processing optimizations contribute to performance im-
provement. Here, we use OpenBLAS as a baseline to show the
speedup contribution brought by each of the two optimization
techniques. The experiment was performed on single-threaded
irregular-shaped, NT mode GEMM. In the experiment, we fix N
and K to VGG DNN kernel size of 50,176 and 576, but we vary M
from 20 to 120 with a step of 20.

As can be seen from Figure 13, our data packing optimization
can have a significant contribution to performance improvement
because this technique can overlap the expensive memory accesses
with computation through FMA instructions. Our optimizations
also demonstrate various degrees of benefits on different architec-
tures. When M = 20, our two optimizations give a 1.25x and 1.8x
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Figure 9: Performance of irregular-shaped GEMM on Phytium 2000+ under the NT mode (K = 5000).
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Figure 10: Irregular-shaped GEMMs on KP920 (top) and ThunderX2 (bottom) under the NT mode (K = 5000).
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improvement on Phytium 2000+ and KP920 respectively. The reason
for the more noticeable advantage on KP920 over Phytium 2000+
is described as follows. KP920 runs a higher clock frequency over
Phytium 2000+ (2.6 GHz vs 2.2 GHz), and it has more FMA units, al-
lowing KP920 to execute more arithmetic instructions per time unit.
In other words, KP920 requires more intensive FMA instructions
than Phytium 2000+ to keep FMA units busy. It is more difficult
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Figure 13: Breakdown of Optimizations on single-threaded
irregular-shaped GEMM on three platforms.

for OpenBLAS’ implementation strategy to achieve a good CMR
to hide the memory latency on a faster CPU where our approach
gives stronger benefit.

8.6 Evaluation on Application Kernels

In this evaluation, we apply the tested methods to the GEMM ker-
nels extracted from real-life application workloads. In the first
experiment, we apply each approach to the FP64 small GEMM
kernels from the CP2K simulation package [8]. The matrix sizes
involved range between 4 — 32 [23]. As can be seen from Figure 14,
LiBSHALOM gives the best performance across matrix sizes and eval-
uation platforms. Once again, LIBSHALOM demonstrates noticeable
advantages when the input matrices are small. For example, it gives
up to 2X improvement over LIBXSMM for the input matrix sizes
(M X N xK)is5x5x5. Considering LIBXSMM uses a just-in-time
compilation back-end to aggressively optimize the GEMM compu-
tation, this is an impressive improvement obtained by LIBSHALOM
as a library-based solution.
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Figure 15: The FP32 irregular-shaped GEMM Kkernels from the VGG convolutional neural network.

In the second experiment, we evaluate the irregular-shaped
GEMM performance using the typical FP32 convolutional kernels
from the widely-used VGG16 image classification network [24, 25].
Like prior work [24], we consider five convolution layers from
VGG16, namely convl.2, conv2.2, conv3.3, conv4.2 and conv5.2 of
VGG16. These kernels perform GEMM on matrice sizes of M = {64,
128, 256, 512,512} X N = {50176, 12544, 3136, 784, 196} X K = {576,
1152, 2304, 4608, 4608}, where the N dimension of the matrices
are significantly larger than M. In this experiment, we use all the
CPU cores to execute a GEMM kernel. The results are given in
Figure 15. Once again, LIBSHALOM consistently outperforms all
alternative approaches across GEMM kernels and evaluation plat-
forms. LiBSHALOM’s advantage is significant for certain kernels, like
conv1.2 and conv5.2, where it improves the second-best-performing
approach by up to 4x.

9 RELATED WORK

High-performance linear algebra libraries are a vital component
of the HPC systems software stack. A range of linear algebra or
so-called BLAS libraries were developed to optimize the execution
of linear algebra kernels, including GEMMs [1, 3, 41, 42]. Most of
these BLAS libraries are designed to optimize GEMM operating on
large and regular-shaped matrices.

Recent studies have shown that many new HPC workloads use
small GEMM to exploit fine-grained parallelism for better scala-
bility [14, 23]. Other works also highlight the importance of opti-
mizing irregular-shaped GEMMs seen in machine learning work-
loads [24, 29]. Recent works target optimizing small GEMMs on
x86 [23] or irregular-shaped GEMM on GPUs [10, 32]. Some of
these techniques have been integrated into deep learning frame-
works [16, 17]. However, as we have shown in the paper, existing
approaches give a sub-optimal performance on the ARMv8 archi-
tecture, leaving much room for improvement

BLASFEO is designed to optimize both small and irregular-shaped
GEMMs. It provides two optimization routines [14, 15]. The first
covert the input matrices to the panel-major format to improve

the cache locality. The second selectively packs the input matrices
based on some pre-defined heuristics. For example, it does not pack
a small matrix A. Likes existing BLAS libraries, BLASFEO performs
data packing and computation sequentially. It also does not sup-
port parallel execution of irregular-shaped GEMMs. LIBSHALOM
overcomes these limits by overlapping the memory access instruc-
tions introduced by data packing with computations and provides
a highly optimized kernel for parallel execution.

LIBXSMM uses JIT code compilation technology to generate
assembly code for small GEMMs [23]. This technique allows aggres-
sive instruction-level optimization. LIBXSMM uses code cache to
reuse the compilation results to reduce the overhead of JIT. However,
it is designed to optimize tiny GEMM kernels where M, N, K <= 72.
We empirically show that LIBXSMM is ineffective for optimizing
the commonly used small GEMMs where the matrix sizes do not
fit its design scope. Our experimental results show that despite
being a library-based approach, LIBSHALOM is able to outperform
LIBXSMM across GEMM workloads and evaluation platforms.

10 CONCLUSIONS

We have presented LIBSHALOM, a library for optimizing small and
irregular-shaped GEMMs on ARMv8 multi-cores. LIBSHALOM de-
termines if data packing is beneficial, and when packing is deemed
necessary, it uses the FMA SIMD extension to hide the non-trivial
data packing overhead through instruction scheduling. We show
how simple analytical models can be developed to derive the tun-
ing parameters of a GEMM kernel. We evaluate LiIBSHALOM by
applying it to small and irregular-shaped GEMMs on three ARMv8
multi-core architectures and compare it against five mainstream
BLAS libraries. Experimental results show that LiIBSHALOM delivers
consistently better performance across three evaluation platforms.
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