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Abstract—Power and energy is the first-class design constraint for multi-core processors and is a limiting factor for future-generation
supercomputers. While modern processor design provides a wide range of mechanisms for power and energy optimization, it remains
unclear how software can make the best use of them. This paper presents a novel approach for runtime power optimization on modern
multi-core systems. Our policy combines power capping and uncore frequency scaling to match the hardware power profile to the
dynamically changing program behavior at runtime. We achieve this by employing reinforcement learning (RL) to automatically explore
the energy-performance optimization space from training programs, learning the subtle relationships between the hardware power
profile, the program characteristics, power consumption and program running times. Our RL framework then uses the learned
knowledge to adapt the chip’s power budget and uncore frequency to match the changing program phases for any new, previously
unseen program. We evaluate our approach on two computing clusters by applying our techniques to 11 parallel programs that were
not seen by our RL framework at the training stage. Experimental results show that our approach can reduce the system-level energy
consumption by 12%, on average, with less than 3% of slowdown on the application performance. By lowering the uncore frequency to
leave more energy budget to allow the processor cores to run at a higher frequency, our approach can reduce the energy consumption
by up to 17% while improving the application performance by 5% for specific workloads.

Index Terms—power management, multi-cores, reinforcement learning, power capping, uncore frequency, phase change detection.
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1 INTRODUCTION

IN an era where computing hardware hits the power
wall, energy efficiency is of paramount importance to

today’s computing systems. Indeed, power and energy con-
sumption is the first-class constrain for high-performance
computing (HPC) systems and future generation exascale
computing infrastructures [1], [2]. To improve the energy
efficiency of next-generation exascale computing, we need
to significantly improve the energy efficiency of computer
systems to make HPC scalable and sustainable.

Modern processors provide a range of techniques for
energy optimization. Examples of such techniques include
Dynamic Voltage and Frequency Scaling (DVFS) [3], Intel’s
Running Average Power Limit (RAPL) [4] and AMD’s Ther-
mal Design Power (TDP) Power Cap [5]. These mechanisms
offer energy-saving potential by allowing the software to
monitor and control the power profile of processor cores
and their peripherals. Realizing such potential requires the
software system to dynamically reconfigure the hardware to
match the behavior and demand of the running application.
However, doing so is challenging as the best hardware
configuration changes from one program to the other and
from one running phase to another within a single program
execution.

There is an extensive body of work on utilizing the
hardware power control mechanism to reduce energy con-
sumption of computing systems [6], [7], [8], [9], [10]. While
encouraging results have been achieved, existing solutions
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primarily focus on optimizing the energy consumption of
the CPU core. They largely overlook other CPU subsystems
for memory communications, cache coherence, and input
and output peripherals, which are referred to as the uncore
by Intel. Power optimization for the uncore subsystem
is increasingly crucial because it can account for 20% of
the overall CPU power consumption [11], [12], [13], and
this contribution is expected to grow for future generation
CPUs [14], [15], [16]. Uncore power optimization is also
particularly important for emerging HPC workloads like
large-scale data processing applications, which often incur
extensive data communications [17], [18]. As we will show
later in the paper, leaving the hardware to manage the
uncore frequency often results in a significant waste of
energy consumption that a more intelligent software-based
optimization scheme could otherwise save.

This paper presents a new approach for optimizing
multi-core power consumption by dynamically matching
the CPU configuration (i.e., the maximum power limit of
the multi-core chip and its uncore frequency) to the run-
ning program. As a departure from prior works [19], [20],
[21], our approach explicitly considers the frequency of the
uncore subsystem for energy optimization. We achieve this
by developing an adaptive power management scheme to
limit, at runtime, the multi-core chip’s power consumption
(e.g., power cap)1 and configure the uncore frequency. Our
approach dynamically adjusts the power profile of the CPU
to match the workload states (or phases) throughout its exe-
cution. Such an online adaption approach allows the power

1. DVFS of the CPU is being moved to hardware on modern multi-
cores like Intel Xeon processors [22]. However, we can still configure
the power cap of the CPU to guide hardware DVFS.



2

manager to dynamically tailor the hardware configuration
to the changing program execution characteristics. It avoids
the pitfalls of a static optimization strategy where the hard-
ware configuration remains unchanged for the dynamically
evolving program phases [23], [24], [25], [26].

One of the key challenges of online power management
is how to detect phase changes and adapt to such changes.
The state-of-the-art machine-learning-based power manage-
ment method [10] uses the slack between the idle time and
the wall time of the entire CPU to detect phase changes.
However, such a strategy cannot decouple the behaviors
between the core and the uncore domains. As we will show
later in Section 5.2, this approach is inadequate for uncore
power optimization, leaving much room for improvement.
By contrast, our work leverages the hardware performance
counters to decouple core and uncore domains, providing
a more accurate mechanism for detecting uncore phase
changes. To adapt to the changing runtime behavior, we
then dynamically re-configure the hardware when a pro-
gram phase change is detected.

Unlike prior online power optimization methods that
focus on choosing a short-term power configuration for
the current observation (that can be sub-optimal for the
longer term) [7], [27], [28], [29], our approach is designed
to optimize the overall power optimization for the entire
program execution. Here, the central issue is: how do we,
at runtime, evaluate whether a particular configuration is
good? We cannot afford to try out all configurations and
pick the best. Furthermore, once we have selected a policy
and followed its decision, we still do not know how good it
was in the longer term.

We overcome these challenges by employing reinforce-
ment learning (RL) [30] to quickly explore the optimization
space to learn how to apply a power configuration based
on the current workload state and adapt its decision during
program execution. Specifically, we learn a policy network
to determine what CPU configuration to apply given the
current system state. The policy network aims to maximize
the cumulative reward, i.e., the overall energy reduction
to the performance loss, of the entire program execution
period. To train the network, we utilize the recently pro-
posed double Q-learning [31] algorithm, which is shown to
be effective in learning over a large, complex optimization
space and can avoid local optimal due to the overestimation
of rewards. During training, the RL agent refines and adjusts
its prediction based on the measured power consumption,
so that a more appropriate decision can be made for the
next scheduling epoch. The agent first learns what action
to use for a given system state from training programs.
The learned agent can then be applied to any new, unseen
program during deployment.

Unlike prior machine-learning-based approaches [23],
[24], [25], [26], [32], where the learned model remains static
after deployment, we use RL to continually refine and
update the decision policy throughout runtime execution.
As the RL system learns and adjusts its decisions over time,
it gains a better understanding of what works for the run-
ning program and becomes more efficient in recommending
hardware power configurations for the target programs and
underlying hardware. Our approach is decentralized, where
we deploy an RL agent to each computing node to monitor

the phase changes and act accordingly on the local node.
This allows us to deal with situations where processes on
different nodes do not synchronize perfectly in phases.

Compared to supervised-learning methods [23], [24],
[25], [33], [34], [35], [36], [37], [38], our RL-based solution
has the benefit of not requiring labelled a large number of
training samples to train the model. Obtaining sufficient
and representative training samples to cover a diverse set
of workloads seen in deployment have been shown to be
difficult [39], [40], [41], [42]. Without a large and sufficient
training dataset, a supervised learning method often de-
livers poor performance during real-life uses as the target
program behavior can be significantly different from those
seen at the training phase. Our work avoids this pitfall
by first using offline learning to boost the learning of a
decision agent and then use runtime feedback to update the
learned knowledge constantly. Our approach is useful for
the typical long-running workloads in an HPC environment.
It allows the power management system to adapt to the
dynamic program behavior that can change depending on
the program input, which is hard to anticipate ahead of time.

We evaluate our approach by applying it to 19 parallel
benchmarks running on two HPC clusters, including a 4-
node cluster with 160 Cascade Lake cores and a 16-node
cluster with 196 Haswell cores. We compare our approach
against three state-of-the-art multi-core power management
systems [10], [43], [44], and two implementation variants
of our RL-based approach. Experimental results show that
our scheme consistently outperforms prior methods, reduc-
ing the energy consumption and program running time
respectively by 12% and 3% on average. We show that our
approach achieves this without significantly compromising
the program execution time compared to a baseline scheme
for setting the power cap to the TDP and letting the Linux
ondemand frequency governor dynamically determine the
core frequency and the CPU firmware to modulate the
uncore frequency. Experimental results show that our sys-
tem exhibits a good scalability by delivering comparable
performance on the two clusters with different computing
nodes and sizes. We show that, in some cases, we can
accelerate the program runtime by 3% while reducing the
energy consumption by 17%. Our work focuses on modern
multi-core CPUs, a fundamental building block of exascale
computing. It targets power and energy consumption, a
limiting factor of exascale computing. Moreover, our decen-
tralized decision process has good scalability and can be
extended to a large distributed environment.

This paper makes the following contributions:

• It is the first work to employ RL to dynamically
configure the uncore frequency for power manage-
ment, by simultaneously considering the chip power
capping and the frequency of the uncore domain.

• It presents a simple yet effective approach for auto-
matic and dynamic phase detection that decouples
core and uncore domains. Our approach does not
require user involvement and is transparent to the
running application.

• It provides a detailed analysis of the working mecha-
nism of RL-based online power management on real
computing clusters.
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Fig. 1: A simplified view of processor cores and the uncore
subsystem of the Intel processor design.

2 BACKGROUND AND MOTIVATION

2.1 Uncore and Power Management Interfaces

Our work targets the Intel processor architecture, but the
methodology can be applied to other multi-core architec-
tures with power monitoring and configuration interfaces.
For instance, our techniques can be easily ported to the
AMD Zen architecture that also provides RAPL-like inter-
faces for power monitoring and configurations [45], [46].

Figure 1 depicts a simplified view of an Intel processor
that contains both processor cores and the uncore. The
core contains the components of the processor involved in
executing instructions, including the arithmetic logic unit
(ALU), floating-point unit (FPU), and the Level 1 and Level
2 caches. The uncore functions include the quick path inter-
connect (QPI) controller, the integrated memory controllers
(IMC), and the last level cache (LLC). The uncore typically
occupies 30% of a die area [14] and can contribute to 20% of
the processor’s power consumption [12], [13]. We note that
the current Intel CPU firmware sets the uncore to run at the
highest frequency throughout the program execution once
an uncore activity is detected (e.g., a memory load). Such
a strategy can lead to significant energy waste for CPU-
bound applications where the application performance is
insensitive to the memory latency. Our work is designed to
avoid this drawback by dynamically adjusting the uncore
frequency.

Power monitoring and control. In this work, we limit
the processor’s power consumption by configuring some
RAPL-related, model-specific registers (MSR) on our eval-
uation platforms. Specifically, we use the open-source
msr-safe Linux kernel module [47] to read from and write
to the MSRs for power measurement and uncore frequency
scaling (UFS). The msr-safe module provides user-level
interfaces that do not require root permission. We also use
the Linux perf profiler to read other performance counters
for phase change detection (Section 3.2). For the events that
we trace through perf, no root privilege is required. Finally,
to set the power cap, we use the Linux powercap interface
that also does not need root permission.

2.2 Reinforcement Learning

Our work employs RL to develop a dynamic power opti-
mization scheme. RL works by obtaining strategy improve-
ment through continuous interactions with the changing
environment in discrete time steps [48]. At each step, an
agent receives the current state and reward (e.g., a function
of the measured energy consumption). It then chooses an

0 20 40 60 80 100 120 140 160
Timeline [Seconds]

0
20
40
60
80

100
120

CP
U 

po
we

r [
W

at
t]

baseline
uncore-frequency-only
powercap-only
static-best

(a) AMG.

0 10 20 30 40 50 60 70
Timeline [Seconds]

0
20
40
60
80

100
120

CP
U 

po
we

r [
W

at
t]

baseline
uncore-frequency-only
powercap-only
static-best

(b) miniQMC.
Fig. 2: CPU power consumption and application runtime for
benchmarks AMG (a) and miniQMC (b).

action from the set of available actions (e.g., a power con-
figuration in this work) and uses the action to configure
the environment (e.g., the hardware). The environment will
then move to a new state, and the reward associated with
the transition is determined. The goal of the RL agent is
to learn a policy that maximizes the expected cumulative
reward, i.e., the overall energy saving in this work.

In this work, we choose to use a policy network to
configure the hardware because a policy network can di-
rectly choose what action to take (i.e., what hardware con-
figuration to apply in this work) given the current system
state. This formulation naturally fits our problem settings
for predicting a single hardware configuration. We learn and
update the network using the recently proposed double Q-
learning [31], [49], a value-based RL algorithm to explore
the discrete optimization space of our problem. Double Q-
learning is shown to be more effective than the traditional Q-
learning algorithm [50] for RL training, because it can avoid
the local optimal due to the overestimation of the reward.

2.3 Motivation Examples
To demonstrate the importance of uncore frequency scaling
for power management, we run AMG and miniQMC from
the ECP proxy applications suite [51] on a server with two
Intel Xeon Gold 6230 processors (2×20 cores, 2×40 threads).

Figure 2 shows the power consumption given by a
baseline for setting the power cap to the chip’s TDP,
using the Linux ondemand CPU frequency governor for
core frequency setting and CPU firmware for uncore fre-
quency scaling. Here, we obtain the best-static configuration
(denoted as static-best) by profiling all static combina-
tions of the chip’s power cap options and uncore frequency
settings. The x-axis of the diagram represents the timeline
of program execution, and the y-axis represents the average
power consumption of each processor. In this experiment,
we use the same power configuration throughout the entire
program execution, but later we will describe how our
approach can dynamically adjust the power configuration.

As can be seen from the diagram, the baseline power
management scheme leaves significant room for improve-
ment. For the memory-intensive AMG, the static-best con-
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figuration is to cap the processor power at 85 W (40 W
below the TDP of 125 W) and set the uncore frequency to
2.2 GHz (0.2 GHz below the default uncore frequency of
2.4 GHz). Such a strategy can save power consumption by
28% at the cost of a minor program slowdown of less than
2%. If we only apply the power cap (powercap-only) but
let the CPU control the uncore frequency, we can achieve
a similar execution overhead as static-best, but the
CPU will consume 5 W more power. This suggests that it
is important to adapt the uncore frequency to maximize
energy saving. If we only statically adjust the uncore fre-
quency (uncore-frequency-only), we can only achieve
a modest energy saving compared to the baseline. The
results demonstrate the importance of combining power cap
and uncore frequency together for power optimization.

If we now consider the compute-intensive miniQMC
application, we see that the powercap-only strategy is in-
adequate for achieving energy saving without significantly
compromising the performance. This is not surprising as
miniQMC is a CPU-bound application that will suffer from
lower CPU core clock frequency imposed by a low power
budget. However, because this application’s execution time
is not dominated by data communications, we can lower
the uncore frequency (uncore-frequency-only) to re-
duce the energy consumption by 13%, without performance
slowdown. Interestingly, by lowering the uncore frequency,
we allow the processor core to occasionally run at a higher
frequency while still staying within the chip’s power bud-
get, leading to a slightly faster program running time.

This experiment highlights the benefits of combining
power capping and uncore frequency scaling for power
management. It also shows that the default power manage-
ment scheme implemented by the operating system and the
CPU firmware is ineffective in power optimization. Prior
methods based on analytical models are also undesired as
they rely on assumptions of the system behavior, which can
be too simple for real-world applications [52]. Supervised
learning methods avoid the drawbacks of analytical models
by learning from empirical observations, but prior work in
this area uses a single power configuration throughout the
application execution, which cannot adapt to the program
phase change. Later in Section 5.2, we show that the state-
of-the-art online power management scheme [10] based on
machine-learning-based DVFS can give poor performance
as it ignores the impact of uncore frequency scaling. Our
work is designed to overcome these weaknesses. As we will
show later, by dynamically adjusting the hardware configu-
ration throughout the program execution, our approach can
achieve better performance than the default configuration.

3 OUR APPROACH

3.1 Overview

Our work optimizes the power consumption of multi-
cores by dynamically adjusting the maximum power limit
to be used by the chip and configuring the frequency of
the uncore. Our goal is to reduce the CPU chip’s energy
consumption without significantly compromising the ap-
plication response time. At the core of our approach is an
RL-based online power management system that monitors
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Fig. 3: Overview of our RL-based online power management
system framework.

the state of the application and the system to configure the
hardware on a per program per CPU basis.

As depicted in Figure 3, our RL framework consists
of three components. The system state observer monitors
the program behavior through lightweight hardware perfor-
mance counter measurements. It uses the hardware perfor-
mance counter information, combining with the historical
information and statistical analysis, to detect the phase
change of alls programs running on a CPU. The observer
also measures the energy consumption of the chip us-
ing hardware energy accounting mechanisms (Section 2.1).
Based on the energy measurement, the reward calculator
computes the rewards of the recently applied power con-
figuration. The measurement is used to update the Q tables
for the given power configuration. The Q tables (Section
3.2) are then used to choose the power configuration to be
passed to the power controller to configure the power cap
and the uncore frequency. Note that we take a decentralized
approach by running a system state observer on each of
the computing nodes in a distributed environment. The
RL system reconfigures the hardware if a program phase
change is detected on a local computing node.

3.2 Problem Formulation
Our power management scheme determines the hardware
configuration to use based on the current system state. We
use the hardware performance counter readings to define
the system state. Specifically, in this work, we consider
two hardware performance events, the instruction per cy-
cle (IPC) and the misses per operation (MPO), which are
commonly available on modern HPC multi-core design (see
Section 3.4). In this work, we use the Linux perf [53]
profiler to read the IPC- and MPO-related events.

For a sequence of system states, S = {s1, s2, ..., sn},
the RL system needs to take a sequence of actions, A =
{a1, a2, ..., am} to achieve the optimization goal. For ex-
ample, one can divide the IPC values (between 0 and 1.0)
into ten regions where each region corresponds to a level of
instruction parallelism that corresponds to a system state;
for each IPC state, we then record the reward (a transforma-
tion of the measured energy consumption) when using an
uncore frequency. We use the measured short-term reward
to update the Q tables - a data structure used to calculate
the maximum expected future rewards for action at each
state. Once the Q tables are populated, we can then choose
a frequency that gives the maximum total reward for a given
IPC state.

3.3 Updating Q Tables
Algorithm 1 outlines our RL-based power management
scheme. To begin with, we initialize the Q tables with zero
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Algorithm 1: RL-based power management
Input: Test set T
Output: Action a

1 Initialize state s, threshold ε1, threshold ε2, learning rate α, discount
factor γ;

2 for i = 1, 2, ..., n do
3 for j = 1, 2, ...,m do
4 QA[si, aj ]← 0;
5 QB [si, aj ]← 0;
6 end
7 end
8 Execute test set T ;
9 while s is not terminal do

10 Observe system workload w, Estimate the energy consumption of
last period E;

11 Calculate state s′, based on w;
12 Generate random number Θ1 ;
13 if Θ1 > ε1 then
14 a← max(QA(s, a), QB(s, a)) ;
15 else
16 a← random ;
17 end
18 Take action a;
19 Calculate reward r, based on E;
20 Generate random number Θ2 ;
21 if Θ2 > ε2 then
22 a∗ = argmaxaQ

A(s′, a);
23 QA(s, a)←

QA(s, a) + α(s, a)[r + γQB(s′, a∗)−QA(s, a)];
24 else
25 a∗ = argmaxaQ

B(s′, a);
26 QB(s, a)←

QB(s, a) + α(s, a)[r + γQA(s′, a∗)−QB(s, a)];
27 end
28 s← s

′
;

29 end

rewards. We then update the Q tables according to the steps
described as follows.

Our state observer periodically takes performance
counter readings and uses the measurement to detect pro-
gram phase changes. If a new program phase is detected,
the state observer will record the energy consumption of
the system given by the Linux interface (Section 2.1). The
reward calculator will then compute the corresponding re-
ward for the currently used power configuration. This is
described in more detail in Section 3.4.

Based on the system state representation, the power
controller chooses the CPU power budget and the uncore
frequency that gives the biggest Q value (i.e., the estimated
cumulative reward) according to the Q tables. From time to
time, the power configuration will be chosen at random to
avoid the system to be trapped in a local optimal. This is
done through a ε-greedy mechanism that quickly explores
the state space. We note that the parameter ε is configurable,
where a higher value means the greedy algorithm is trig-
gered more often.

Finally, the two tables are updated with different sets of
experience samples. Therefore, in each iteration, only one
Q table is randomly updated. Then, as shown in Figure 4,
each Q table is updated with a value from the other Q table
(line 22 in Algorithm 1). This is an unbiased estimate for
the value of this action. We use the commonly used Bellman
equation [50] to update the Q tables (line 23 in Algorithm 1).
For example, in Figure 4, when the measured IPC falls into
the ”0.1” region, table B is updated with the corresponding
values from table A to avoid overestimation caused by Q-
learning strategy.

1.2GHz 1.8GHz 2.4GHz

0.1 0.45 0.66 0.82

0.2 0.36 0.54 0.56

……

1.0 0.22 0.66 0.32

1.2GHz 1.8GHz 2.4GHz

0.1 0.55 0.88
→ 0.7 0.76

0.2 0.34 0.52 0.43

……

1.0 0.21 0.64 0.35

Action
IPC

Action
IPC

Q-Table A Q-Table B
Fig. 4: Example of how the Q table is updated using feed-
back from the other table.

0.0

0.5

1.0

Da
ta

 n
or

m
.

Processor power consumption IPC

0 20 40 60 80 100
Timeline [Seconds]

0.0

0.5

1.0

Da
ta

 n
or

m
.

Memory power consumption MPO

Fig. 5: Phase changes in miniAMR.

3.4 Detect Phase Changes

We represent the system state in a vector of the two
hardware performance counter values. Our rationale for
choosing these two metrics are justified as follows. Many
programs phases belong to one of the two categories accord-
ing to their computation characteristics: compute-bound
and memory-bound. For compute-bound workloads, the
commonly used performance indicator is the IPC [54]. A
high IPC indicates the program spends most of the time
on CPU processing. For memory-bound workloads, we use
the MPO [54], [55] to measure how frequently the program
access the memory. This metric is derived by normalizing
the last level cache misses to the number of instructions
measured. As the MPO value increases, the workload be-
comes more memory-bound because the number of memory
accesses per operation grows. In addition, we discretize
these performance indicators to obtain a finite state space.
Therefore, a drastic change (encoded in the Q tables like
Figure 4) in the < IPC,MPO > state vector indicates a
phase change.

Running example. Figure 5 shows the energy profile and
IPC and MPO readings of miniAMR [51]. To aid clarify,
we normalize the measurements by scaling the value to the
[0, 1] range using the minimum and maximum values seen
during profiling. We can see ten distinct phases where per-
formance counter values change drastically. These phases
include short compute-bound phases characterized by high
CPU energy consumption, high IPC, low DRAM energy, and
low MPO, which occur between relatively longer memory-
bound phases characterized by low CPU energy, low IPC,
high DRAM energy and high MPO. As a result, the tran-
sition from a memory-bound phase to a compute-bound
phase can be identified by a rise in IPC or a decline in MPO.
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TABLE 1: Hardware platforms and RL settings
Configuration Platform Min Max RL Step

CascadeLake 95 W 125 W 5 WPower capping Haswell 90 W 120 W 5 W

Uncore frequency CascadeLake 1.8 GHz 2.4 GHz 0.1 GHz
Haswell 1.8 GHz 3.0 GHz 0.2 GHz

3.5 Reward Functions
Like all RL systems, we need to have a reward function to
compute the instantaneous reward after applying a hard-
ware configuration. Initially, we consider a simple reward
function by negating the power consumption measured in
each scheduling window - R1(s, a) = −power, where s and
a are the state and the corresponding action respectively.
This reward function allows us to penalize a configuration
that leads to high power consumption, but it ignores the
impact on the performance.

To better control the trade-off between energy and per-
formance, we then turn to consider (IPC)2/W , the square
of instructions per cycle divides power. In essence, this
is an inverse EDP formulation (i.e., Energy × Delay),
where we compute the delay as average execution time per
instruction. As we are targeting HPC workloads, we would
like to give a higher penalty for a longer delay. This results
in the third candidate reward function (IPC)3/W , which
is essentially an inverse of ED2P , computed on a per-
instruction basis. To make sure the rewards are monotonic
increasing, we multiply (IPC)2/W and (IPC)3/W by a
constant parameter, c (where c >= 10). This modifica-
tion gives us two additional candidate reward functions,
R2(s, a) = (c× IPC)2/W and R3(s, a) = (c× IPC)3/W .

In Section 5.6, we empirically show that the third reward
function, R3(s, a) = (c × IPC)3/W , gives the best overall
performance and hence is our chosen reward function.

3.6 Complexity Analysis
Our Q tables map a given system state to a power config-
uration. Identifying a power cap and uncore frequency for
a given state from a Q table requires comparing M candi-
date actions (that are associated with the state) to find the
configuration that gives the maximum Q value. The number
of candidate actions, M , for a state is constant and depends
on the configuration knobs (e.g., the range of power limits
and the interval between two settings) provided by the
underlying hardware. Hence, the time complexity of our
approach is constant, O(1). The space complexity of our
scheme is a function of the Q table sizes and the number
of computing nodes (as we deploy a copy of the Q tables
in each computing node - see Section 3.1). This comes to
O(N ∗M ∗ |node|) for the space complexity, where N and
M are the numbers of states and actions, respectively.

4 EXPERIMENTAL SETUP

4.1 Platforms and RL Configurations
We evaluate our approach by applying it to two HPC clus-
ters with different Intel CPU architectures, listed in Table 1.
Our main evaluation platform consists of four CascadeLake
computing nodes. Each node has two 20-core Intel Xeon
Gold 6230 processors (160 cores for 4 nodes) and 256 GB

TABLE 2: Benchmarks used in our evaluation
Benchmark Suite Version Use Problem Size

CG NPB MPI Training A/B/C/D
EP NPB MPI Training A/B/C/D
FT NPB MPI Training A/B/C/D
IS NPB MPI Training A/B/C/D
LU NPB MPI Training A/B/C/D
MG NPB MPI Training A/B/C/D
BT NPB MPI Training A/B/C/D
SP NPB MPI Training A/B/C/D
LULESH LLNL MPI Testing 30*30*30
miniAMR ECP MPI Testing 6*6*6
HPCCG ECP MPI Testing 200*300*100
miniQMC ECP OpenMP Testing 2*2*2
NekBone ECP MPI Testing 25*2*1
AMG ECP MPI Testing 180*180*180
CoMD ECP MPI Testing 100*100*200
miniFE ECP MPI Testing 500*500*500
Sweep3D DOE MPI Testing 720*360*360
Keras-CNN BigDL Spark Testing 2*5*32*32
LeNet-5 BigDL Spark Testing 2*5*32*32

memory. The cluster supports 13 uncore frequency levels,
from 1.2 GHz to 2.4 GHz, with a step of 0.1 GHz. The
power limits of the entire chip can be configured from 65
W to 125 W (TDP). We remark that most of the experiments
were conducted on a CascadeLake node except for the
scalability experiment presented in Section 5.5. To evaluate
the scalability of our approach, we also apply our approach
to a second, 16-node computing cluster with Intel Haswell
CPUs. Each node of this cluster has one 12-core Intel Xeon
E5-2678 v3 processor and 48 GB of RAM. This cluster
supports 19 uncore frequency levels, from 1.2 GHz to 3.0
GHz, with a step of 0.1 GHz. The power limits of the entire
chip can be configured from 61 W to 120 W (TDP). Note that
we set the minimum value of the hardware configurations
to the median value provided by the hardware knobs, as
using a lower setting has a severely negative impact on the
application performance.

4.2 Systems Software and Sampling
All our evaluation system runs Ubuntu version 16.04 with
Linux Kernel 4.15.0. As stated in Section 2.1, we use the
perf profiler to sample the hardware performance events
and the msr-safe module to take a reading of the power
consumption (given by the RAPL-related MSRs) every 3
seconds. We find that this sampling interval can give ac-
curate energy consumption measurement and allow our RL
system to quickly react to the change of program behavior.
However, the sampling window can be changed by the user
without affecting the working mechanism of our approach
in the see also Section 5.7. All the code for monitoring and
controlling power is written in C, and is deployed to each
node independently. So each node’s phase change detection
and power configuration are carried out independently.

4.3 Benchmarks
We use 19 parallel benchmarks in our evaluation. These
benchmarks represent a wide range of application domains,
as listed in Table 2.
Training. Our RL system is trained on the NAS parallel
benchmark suite using input classes A, B, C, and D. Ac-
cording to the study in [27], EP is a compute-intensive
benchmark, BT, SP, and LU are last level cache-bound
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benchmarks, and MG, FT, IS, and CG are memory-bound
benchmarks. During training, the RL algorithm learns and
updates the Q tables using the measured reward for a power
setting under an observed system state (Section 3.4).
Testing. To evaluate the generalization ability of our RL sys-
tem, we also apply the trained system to 11 benchmarks that
are not seen at the training stage. These testing benchmarks
include AMG, CoMD, miniFE, miniQMC, HPCCG, NEK-
bone, and miniAMR from the ECP proxy applications suite
[51], LULESH from the LLNL Proxies [56], Sweep3D [57],
LeNet-5 [58] and Keras-CNN [59]. Specifically, Sweep3D is
a core algorithm used by the DOE’s accelerated strategic
computing initiative application, and LeNet-5 and Keras-
CNN contain the key algorithms used in many deep learn-
ing workloads. We use the MPI version of all benchmarks
except for miniQMC where use the OpenMP version for
single node evaluation and the MPI version running across
distributed computing nodes for scalability evaluation (Sec-
tion 5.5).

4.4 Performance Report
To measure execution time and energy consumption, we run
each test case repeatedly until the 95% confidence bound per
application per input is smaller than 5%. We then report the
average performance across test runs.

4.5 Baseline Scheme
We report energy saving and performance degradation by
comparing to a baseline scheme, for which we set the
power cap to the thermal design power (TDP) of the hard-
ware and let the Linux ondemand CPU frequency governor
to adjust the CPU core frequency and the CPU firmware
modulates the uncore frequency.

4.6 Competitive Schemes
We compare our full implementation against three prior
approaches and two implementation variants.
Prior works: We compare our approach against the follow-
ing three online power management systems [10], [43], [44]:
CoPPer. This implements a feedback controller for power
optimization [43]. It uses hardware power capping to meet
application performance requirements while achieving en-
ergy efficiency. To detect application phase changes, CoPPer
requires the user to supply the job latency target, and it also
requires the application to measure its own performance
progress. By contrast, our approach does not require user
involvement and is transparent to the running application.
GEOPM. The Global Extensible Open Power Manager
(GEOPM) [44] uses a tree-hierarchial strategy to perform
runtime power optimization across distributed computing
nodes. GEOPM provides plugins to monitor the progress
of current tasks to identify execution bottleneck and adjusts
the CPU frequency to achieve load balance among tasks.
Its current implementation does not provide an RL-based
power management strategy like ours.
RL-based scheme. The closely related work presented in
[10] uses double Q-learning to dynamically adjust the CPU
frequency for power optimization. It detects the current
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Fig. 6: Energy savings and the resulting slowdowns on a
single CascadeLake node with respect to the baseline power
management scheme (Section 4.5).
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Fig. 7: Power consumption with the baseline and our online
power management system.

system phase through the time slack between the CPU
idle time and the wall time of program execution. Unlike
our approach, this scheme does not explicitly consider the
uncore activities.
Implementation variants: We also compare our full imple-
mentation to two variant implementations of our scheme:
Powercap. For this method, we apply our RL system to
dynamically adjust the CPU power budget based on the
program phase change but let the CPU firmware determine
the uncore frequency.
UFS. For this implementation, we apply our RL system to
only adjust the uncore frequency at each detected program
phase change. We use the Linux ondemand governor to
determine the CPU frequency and set the power cap to TDP.

5 EXPERIMENTAL RESULTS

In this section, we first present the overall results of our ap-
proach using all benchmarks (Section 5.1), showing that our
approach achieves consistently good performance across
evaluated benchmarks. Then, in Section 5.2, we compare
our approach against the five alternative schemes described
in Section 4.6. Next, we evaluate our approach in scenar-
ios where we run multiple MPI processes of the sample
program on a single node (Section 5.3), and where we
mix multiple programs on a single node (Section 5.4). We
then extend our evaluation to the second computing cluster
to evaluate the scalability (Section 5.5) before providing
analysis on our design choices in Sections 5.6 and 5.7.

5.1 Overall Results
As can be seen from Figure 6, our training strategy is
effective across benchmarks. When the NAS training bench-
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Fig. 8: Energy savings, the resulting slowdowns and EDP of different power management approaches with respect to the
baseline power management scheme (Section 4.5).

marks are used in testing, we achieved an average energy
saving of 12.5%, with an average performance slowdown
of less than 3%. When tested on unseen benchmarks, our
approach gives an average energy saving of 12% with less
than a 3% slowdown in application performance. The stable
performance is because the Q values learning from the
training are generally portable across benchmarks, and our
RL system can update the Q values using runtime obser-
vations. This shows the good generalization ability of our
scheme. For most test cases, our approach achieves energy
savings with marginal performance degradation. Notably,
our approach delivers energy savings for both compute-
bound and memory-bound applications. For instance, appli-
cations like EP, BT, SP, MiniAMR, miniQMC and Nekbone
have longer CPU-bound phases than others. Our approach
achieves energy reduction by running the application at a
higher power cap with a lower uncore frequency for these
applications. By contrast, our approach chooses a lower
power cap for memory-bound applications to reduce the
core frequency but increase the uncore frequency as the
memory access is the bottleneck. Such an adaptive scheme
allows our approach to reduce energy consumption for most
test cases at the cost of marginal performance degradation.

Working examples. Figure 7 takes a close look at AMG
and miniQMC seen earlier in Section 2.3. It shows the
average CPU power consumption resulting from our ap-
proach against the baseline scheme described in Section 4.5.
Two observations can be derived from these experimental
results. Firstly, with our approach, the CPU spends more
time at a lower power state than the baseline. This is
observed for both the memory-intensive AMG benchmark
and the compute-bound miniQMC benchmark. Secondly,
our approach can adapt to program phase changes by
dynamically adjusting the hardware configuration. Specif-
ically, for miniQMC that incur frequent phase changes, our
approach does not always stay at the lower power cap stage.
Instead, it detects the phase change and adjusts the power
cap and uncore frequency accordingly, demonstrating the

adaptiveness of our scheme.

5.2 Compare to Alternative Schemes

As can be seen from Figure 8, our approach gives the
best trade-off between energy saving and performance loss
when comparing to the five alternative power management
methods described in Section 4.6. For example, our scheme
gives a similar, modest performance loss of less than 3% on
average when compared to CoPPer, but improves the energy
saving by 4% over CoPPer. GEOPM is conservative in trad-
ing performance for energy reduction compared to other
approaches. As a result, it gives less slowdown, less than 2%
on average. However, GEOPM is over-conservative, which
only delivers less than half of the energy reduction give
by our approach. Finally, although the RL-based alternative
scheme [10] gives slightly better energy reduction than
our scheme, this often comes at a significant performance
penalty – up to 40% for some benchmarks. If we now
consider the improvement on the EDP, a higher-is-better
metric for quantifying the trade-off between performance
loss and energy saving. Our approach achieves a better
trade-off between performance and energy-saving on most
of the benchmarks compared to alternative schemes. While
the state-of-the-art RL-based energy optimization scheme
(i.e., RL on the diagram) can achieve a higher EDP over
our approach on four benchmarks, it can give poor EDP on
compute-bound benchmarks, leading to an overall degrada-
tion on the EDP.

Our approach for combining power capping with uncore
frequency scaling gives more benefit than that of a single
operation. For instance, the prior RL-based method [10] and
our powercap-only (powercap) implementation variant
only enforces power cap but ignore the uncore frequency.
Both strategies give an average energy saving of 4%, with
the average performance loss is 0.8% and 1.3%, respectively.
Compared to these schemes, our approach give 3x more
energy saving but with a similar performance slowdown.
By dynamically scaling down the uncore frequency, we open
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Fig. 9: Energy savings and the resulting slowdowns when
using different numbers of MPI processes on a single node,
with respect to the baseline (Section 4.5).

TABLE 3: Multi-application Workloads
Name Applications Name Applications

mix1 AMG, IS, MG mix2 AMG, MG, miniFE
mix3 EP, miniQMC, Nekbone mix4 IS, miniFE, miniQCM

the availability to run the core to higher frequencies because
a low uncore frequency enables the saved uncore power
budget to be used to boost the frequency of the processor
cores. The increased core frequency, in turn, allows us to de-
liver similar performance for compute-bound applications
while lowering the overall energy consumption. Overall,
our approach can better trade application performance for
energy reduction. If we now consider the EDP and ED2P
metrics, our approach improves EDP and ED2P by 4%
and 10% on average when compared to the best-performing
alternative method.

5.3 Impact of Concurrent Processes on a Single Node

One way of improving the system utilization is to run mul-
tiple programs or processes on a single computing node. In
this experiment, we study the impact of running concurrent
MPI processes on a single node by using a single RL system
to perform power optimization across multiple processes.
Intuitively, having more concurrent processes increases the
complexity of the optimization space.

Figure 9 shows how the number of concurrent processes
affects the performance of our approach. In this experiment,
we vary the MPI processes used for each application by
running different MPI processes as given in the legend. The
number of MPI processes has little impact on the power
management system. The power management system saves
energy by 11%, 10%, and 12%, and reduces the completion
time by 1.6%, 0.7%, and 3% for the three process numbers,
respectively. The observation indicates adaptability of the
power manager to the application parameters changes, thus
leading to energy-efficient power management.

Our approach not only saves energy but also improves
the application performance in some cases. For instance,
when SP is executed, the system reduces the energy con-
sumption by 14% with a performance improvement of 3%
over the baseline. Similarly, when AMG is executed, it
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Fig. 10: Energy savings and the resulting slowdowns on
multi-application workloads with respect to the baseline
(Section 4.5).

achieves an energy saving up to 17% with a performance
improvement of 5%. The improved performance is because
when our approach lowers the uncore frequency under a
power cap, the saved energy budget can be used to boost
the processor core clock frequency for fast computation.

5.4 Impact of Multi-Application Workloads
In this experiment, we evaluate our approach using multi-
application workloads. The benchmarks used include both
computation-bound and memory-bound workloads. We
create the workload mix by selecting applications from these
two classes, as listed in Table 3. Specifically, we create four
separate mixes, each consisting of three applications. Each
of the mixtures is given the name mixN . For the first
two mixes, the applications are drawn from memory-bound
workloads. The mix, mix3, is when all applications are
compute-bound. Finally, the applications in mix4 include
three applications from two categories. During experiments,
we launch all benchmarks at the same time. We assume that
the application runtime knows that they are running with
other applications. Hence, each runs with only 8 processes,
so that the total number of active processes is no more than
the number of actual cores. We pin the MPI processes to
CPU cores by using the “–cpu-set” and “–bind-to core”
runtime options when launching an MPI program. The
former option tells which set of CPU cores the processes of
an MPI program can run on per node, and the latter binds
individual processes to cores within the given CPU set.

As shown in Figure 10, our approach still gives consider-
able energy saving in a multi-program setup, although the
saving is relatively smaller than in the single-application
scenario. This is due to the complex interactions among
resource competition and synchronization, which create a
larger and more complex optimization space for the RL
system to explore. Nonetheless, our automatic scheme still
achieves over 8% energy reduction without user involve-
ment. For some application mixes, it gives speedups (i.e., a
negative performance loss value in Figure 10) by allowing
the cores to run on a higher frequency using a lower uncore
frequency.

5.5 Scalability
So far, all the evaluations were performed on a single
computing node from the CascadeLake cluster. In this ex-
periment, we evaluate our approach in a distributed com-
puting environment by applying our approach to the 4-
node and 16-node clusters described in Section 4.1. On
each computing node, we run a decentralized RL system
to monitor and perform power optimization at the node
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Fig. 11: Energy savings and the resulting slowdowns on
Cascadelake cluster with respect to the baseline (Section 4.5).
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Fig. 12: Energy savings and the resulting slowdowns on
Haswell cluster with respect to the baseline (Section 4.5).

level. In each computing cluster, we vary the number of
computing nodes used in our evaluation. Figures 11 and
12 show the result on the 4-node CascadeLake and the 16-
node Haswell respectively. Like our previous evaluations,
we normalize the results to the baseline power management
scheme described in Section 4.5.

Our approach exhibits good scalability and portable
performance across the two computing clusters. It delivers
similar energy reduction with modest performance penalty
as the number of computing nodes increased. For the Cas-
cadeLake cluster, when using a single computing node, the
average energy reduction and performance slowdown is
12% and 2.5%, respectively. In comparison, when using 2,
3 and 4 nodes, the energy reduction is 10%, 10.5%, and
11%, respectively, and the performance loss is 2%, 2.5%, and
1.5%, respectively. We also observe a similar trend on the 16-
node Haswell cluster. On a single node, the average energy
reduction is 10% on the Haswell cluster. In comparison, the
energy reduction is between 8% and 11% when using more
than one computing node. Furthermore, the performance
impact is more or less the same when using a different
number of computing nodes on this cluster.

5.6 Impact of Reward Functions

We now compare the three RL reward functions described in
Section 3.5. The results in Figure 13 suggest that our chosen
reward function (c× IPC)3/W gives the best overall trade-
off between energy reduction and performance.

Firstly, using the negative number of power consump-
tion (i.e., -power) as the reward function leads to the least
energy saving. This result may seem to be counterintuitive
as this scheme aims to lower energy consumption regardless
of the program slowdown. However, the relatively low
energy reduction and performance slowdown are because,
in our evaluation, we set the minimum power cap and
uncore frequency to the medium values supported by the
hardware (Section 4.1). This setup limits the ability of this
reward function to further lower the frequency to achieve
better energy saving (which, in turn, limits the performance
slowdown). When lifting this restriction, we found that
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Fig. 13: Energy savings and the resulting slowdowns on
different rewards with respect to the baseline.
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Fig. 14: Energy and time overhead on different problem
sizes and processes w.r.t. the baseline without sampling.

the -power reward function can further reduce the energy
consumption but at the cost of massive program slowdown.

If we now consider the more balance reward functions
(c×IPC)2/W and (c×IPC)3/W that simultaneously con-
sider energy and performance, we see that (c × IPC)3/W
finds a better trade-off between energy reduction and per-
formance slowdown. While (c × IPC)2/W can sometimes
give higher energy saving over (c × IPC)3/W , it can lead
to significantly higher performance loss. For this reason, we
choose (c× IPC)3/W as our reward function.

5.7 Performance Counter Sampling Overhead

We now evaluate the impact of our sampling window for
detecting phase changes. Figure 14 shows the overhead to
the energy consumption and execution time by normalizing
the resulting performance given by our sampling window
to a baseline (Section 4.5) that does not incur sampling
overhead. Here, a negative value means our approach ac-
tually reduces the energy consumption or improves per-
formance (by making the program runs faster). As can be
seen from the diagram, our choice of sampling window
has a negligible negative impact on energy consumption
and performance. Figure 15 shows the average sampling
overhead for energy and performance averaged across our
benchmark settings when we vary the sampling window
size. We report the data by averaging the overhead across all
our test benchmarks and datasets. Note that the minimum
sampling window provided by perf is 3 ms. As can be
seen from the diagram, performance counter sampling has
little impact on the application performance and energy
overhead. We choose a sampling window of 3 seconds
in this work as we found it to be sufficient in detecting



11

0.003 s 0.01 s 0.1 s 1 s 3 s 5 s
1.2

0.6

0.0
Ov

er
he

ad
 [%

]

Time
Energy

Fig. 15: Overhead of different sampling window sizes with
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program phase changes. However, this parameter can be
easily reconfigured by the user.

6 DISCUSSION AND FUTURE WORK

Our approach is among the first attempts in applying RL
to optimize CPU energy consumption by simultaneously
considering the power cap and uncore frequency during
dynamic runtime. Naturally, there is room for improvement
and further work.

Model interpretability. Machine learning techniques, in
general, have the problem of relying on black boxes. This
is just as true for our RL-based method. One way to gain
insight into why the model makes a decision is to train an
interpretable model (or the so-called surrogate models) like
linear regressor [60] or a Markov Decision Process (MDP)
with a value function [50] to approximate the predictions of
the underlying black-box model. We view it as an exciting
future challenge to find ways to better interpret the working
mechanism of an RL-based power management scheme.
Can we correlate the decision to the high-level system
status and program behavior? Can we quantify why a local
optimal may not lead to a better long-term reward for a
long-running program?

Multi-tasking environment. Programs often do not run in
isolation and have to compete for the shared computing
resources with other concurrently running programs [61],
[62], [63]. Our current implementation performs power
optimization on the system level across multiple running
programs. It would be interesting to extend our approach
to apply individual program phase changes to derive hard-
ware configurations on a per-program, per-core basis. For
example, a memory-bound task can run on a CPU core
with a low frequency, and the saved power budget can be
used to increase the core frequency where a computation-
intensive application runs on. Such capability may require
the hardware to support individual power domains at the
processor core level. We leave this as our future work.

Global optimization. Our current implementation deploys
an RL system to each computing node, and each deployed
RL system makes decisions independently on the local node.
This decentralized strategy avoids the synchronization over-
head when processes running on different nodes do not per-
fectly align in steps. It also allows our approach to scalable
to a large, distributed environment. It would be interesting
to introduce some lightweight schemes to coordinate the
executions and optimizations across distributed comput-
ing nodes to improve the overall systems throughput and
energy efficiency. For example, our approach can benefit
from the hierarchical optimization framework of GEOPM

[44], by using it to propagate the information in a tree-
like computing node structure and use the feedback to
coordinate the optimization across computing nodes.

7 RELATED WORK

Our work builds upon the following past foundations but is
quality different from each.

Online power management. Numerous online power man-
agement approaches have been proposed [7], [27], [28], [29],
[44], [64]. Conductor accelerates the application’s critical
path to reduce the waiting time and energy consumption
of non-critical execution paths (or threads) [64]. GEOPM
is an open-source power optimization framework [44]. It
organizes the distributed computing nodes in a tree-like
hierarchy to coordinate the power optimization decisions
across computing nodes. GEOPM allows a new energy man-
agement strategy to be implemented as a plugin. All these
methods use expert-crafted heuristics, which are expensive
to build as they require expert insights into the workloads
and the computing system. Our approach reduces human
involvement by directly learning how to perform energy op-
timization through empirical observations and environment
interactions. Given the diverse set of application workloads
and hardware platforms, an automated approach based
on empirical observations rather than expert knowledge is
more sustainable and scalable.

RL based energy optimization. By using the feedback from
the system environment, a machine-learning-based power
manager learns to improve its decisions over time [10],
[19], [20], [21], [65], [66], [67]. The work presented in [10]
is most closely related to our approach, which uses RL to
adjust the CPU clock frequency. Unlike our approach, this
approach does not model the uncore domain. Moreover, as
we have shown in Section 5.2, this approach can also lead to
significant violation of performance guarantee. Given a total
power budget, PowerCoord employs RL to dynamically
adjust the power supply for the CPU and GPUs to maximize
the system throughput [19]. Unlike our approach, none of
the aforementioned approaches targets uncore frequency
optimization. However, techniques like transfer learning
[68] and collective learning [21] are orthogonal to our ap-
proach.

Dynamic power capping. Most of the existing power
optimization methods do not dynamically determine the
power budget according to the program behavior [6], [23],
[43], [69]. Our previous work [23] uses a machine-learning
model to derive a static power capping configuration but
cannot adapt to the program phase changes. Furthermore,
the machine-learned model is frozen after training and
hence can give a poor performance for previously unseen
workload behavior. Our approach avoids these drawbacks
by using RL to continuously update its decisions to adapt
to the changes of program workloads and runtime phases.
Other works [70], [71], [72], [73] study how different power
caps affect the performance of numerical algorithms with
different computational intensities, showing the importance
of choosing an appropriate power budget at runtime. Our
work builds upon these prior studies to propose an auto-
matic approach to perform CPU power optimization by con-
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sidering CPU power capping and uncore frequency scaling
at the same time.

8 CONCLUSION

We have presented a reinforcement learning (RL) based
approach for online power management, targeting mod-
ern high-performance multi-core architectures. Our tech-
niques dynamically modulate the power cap of the multi-
core chip and the uncore frequency to match the runtime
program behavior. Our work learns how to leverage the
hardware power optimization mechanisms from training
programs. It then uses the learned knowledge to perform
power optimization for new, unseen programs, adapting as
needed. Unlike prior machine-learning-based approaches,
our approach can adapt to the program phase changes and
use runtime feedback to update its decision agent during
execution time. We evaluate our approach by applying it to
optimize parallel programs running on two distributed HPC
clusters. Experimental results show that our approach can
reduce the CPU energy consumption by 12% on average,
with less than 3% slowdown in the program running times.
In certain cases, we can reduce the energy consumption by
17% while accelerating the program execution time by 5%.
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